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A B S T R A C T

Black-box deep learning (DL) models trained for the early detection of Alzheimer’s Disease (AD) often lack
systematic model interpretation. This work computes the activated brain regions during DL and compares
those with classical Machine Learning (ML) explanations. The architectures used for DL were 3D DenseNets,
EfficientNets, and Squeeze-and-Excitation (SE) networks. The classical models include Random Forests (RFs),
Support Vector Machines (SVMs), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting (LightGBM),
Decision Trees (DTs), and Logistic Regression (LR). For explanations, SHapley Additive exPlanations (SHAP)
values, Local Interpretable Model-agnostic Explanations (LIME), Gradient-weighted Class Activation Mapping
(GradCAM), GradCAM++ and permutation-based feature importance were implemented. During interpretation,
correlated features were consolidated into aspects. All models were trained on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset. The validation includes internal and external validation on the
Australian Imaging and Lifestyle flagship study of Ageing (AIBL) and the Open Access Series of Imaging Studies
(OASIS).

DL and ML models reached similar classification performances. Regarding the brain regions, both types
focus on different regions. The ML models focus on the inferior and middle temporal gyri, and the hippocampus,
and amygdala regions previously associated with AD. The DL models focus on a wider range of regions
including the optical chiasm, the entorhinal cortices, the left and right vessels, and the 4th ventricle which were
partially associated with AD. One explanation for the differences is the input features (textures vs. volumes).
Both types show reasonable similarity to a ground truth Voxel-Based Morphometry (VBM) analysis. Slightly
higher similarities were measured for ML models.
1. Introduction

The most frequent cause of dementia [1] and thus a globally grow-
ing health problem is Alzheimer’s Disease (AD). Currently, no causal
therapy can cure AD [2]. The development of pre-clinical markers can
help recruit subjects for therapy studies that aim to stop the disease
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progression among the AD continuum. The continuum includes differ-
ent stages, e.g., cognitive normals (CN), Mild Cognitive Impairment
(MCI) due to AD, probable AD, and AD dementia.

In previous research [3,4], Machine Learning (ML) helped to iden-
tify patterns in high-dimensional data to improve AD detection. Black-
box ML models, e.g., Random Forests (RFs) [5], eXtreme Gradient
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Boosting (XGBoost) [6], or Convolutional Neural Networks (CNNs) [7]
often outperform more interpretable models like Decision Trees (DTs)
or Logistic Regression (LR). However, black-box models give no insights
to prove their biological plausibility. Therefore, interpretable ML [8]
explains black-box models. The explanation of black-box ML models
shows high potential in medical imaging [9,10] and has been previ-
ously used in AD detection [4,11–13]. Deep learning (DL) explanations
mostly focus on visually inspecting the heatmaps of exemplary individ-
uals [14–16]. To the best of our knowledge, there is a lack of work that
systematically compares the regional feature importances of ML and DL
models.

To overcome this limitation, DL-based activations of cortical and
subcortical brain structures are summarized systematically. The ap-
proach facilitates the quantitative comparison of DL and classical
ML explanations. Multiple interpretation methods were compared to
investigate relevant brain structures across methods and models. Those
methods include permutation importance, SHapley Additive exPlana-
tions (SHAP) [17], Local Interpretable Model-agnostic Explanations
(LIME) [18], Gradient-weighted Class Activation Mapping (GradCAM)
[19], and GradCAM++ [20]. For DL, 3D model architectures adapted
from Dense Convolutional Networks (DenseNets) [21], EfficientNets
[22], and Squeeze-and-Excitation (SE) networks [23] were imple-
mented. RF [5], XGBoost [6], Light Gradient Boosting Machines (Light-
GBMs) [24], and Support Vector Machines (SVMs) [25] were trained
as classical black-box ML models. DTs and LR serve as interpretable
comparison models. As model calibration affects the results of explain-
ability methods [26], the implementation of Platt scaling [27] reduced
the model uncertainty. Additionally, permutation-based interpretation
models like SHAP and LIME assume independent input variables. This
assumption is not sustainable for real-world problems such as AD detec-
tion, and thus, another problem that affects the model interpretability
is feature correlation [28]. During the permutation process, correlated
features lead to synthetic subjects with unrealistic combinations of
features. This effect usually results in reduced importance scores for
correlated features compared to the resulting feature importance of in-
dependent features. Due to this bias, a comparison in terms of biological
plausibility is not possible. To overcome this problem, in this work,
correlated features are consolidated using aspects [29]. All models are
trained on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [30]
dataset and validated for an ADNI test set, the external Australian
Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) [31],
and the Open Access Series of Imaging Studies (OASIS) [32] cohorts.
The activated brain regions were compared with the results of a Voxel-
Based Morphometry (VBM) analysis. The contributions of this paper
can be summarized as follows:

• Systematic comparison of relevant brain regions for ML and DL
models in AD detection.

• Comparison of region-based feature importance scores with a
ground truth VBM analysis.

• Model calibration and aspect consolidation to avoid biased model
explanations.

• Internal and external validation to guarantee model robustness.

Section 2 describes related work. The datasets and explainability
ethods are introduced in Section 3. The implementation of the ML
orkflow and the details of the experiments are described in Section 4.
ection 5 elaborates on the experimental results, which are discussed,
ncluding the limitations, in Section 6. Finally, Section 7 concludes the
ork.

. Related work

A comparison between the performance scores of 2D- and 3D-DL
odels as well as classical ML models, more precisely Support Vector
achines (SVMs), is presented in [33]. All models were trained on

wo different subsets of the ADNI dataset. The first subset contains 509
2

(

subjects (162 CN, 76 progressive MCI (pMCI), 134 stable MCI (sMCI),
137 AD), while the second subset consists of 264 subjects (164 pMCI,
100 sMCI). The SVMs were trained using two different feature sets.
Aggregated selection [34] extracted the features of the first feature set
from the voxels of preprocessed Magnetic Resonance Imaging (MRI)
scans. For the second feature set, kernel partial least squares [35] was
used for the extraction. Four pretrained 2D CNNs, namely AlexNet [36],
GoogleNet [37], ResNet [38], and Inception-v3 [39] were fine-tuned
using three single-channel 2D slices of an MRI, which were combined
to build a three-channel image. The 3D CNN models were trained
from scratch on 3D MRI patches. Among other things, the results show
improved performance for the pretrained 2D model compared to the
3D CNN. The best AUC of 93.2% for the classification between CN
and AD was reached for an ensemble of two SVM models. This model
outperforms an ensemble of five 2D CNNs which achieved an AUC of
90.2%. An SVM ensemble trained only on the inner cerebral structures
of the brain performs best for the sMCI vs. pMCI classification (AUC:
73.3%). In comparison to this work, the paper does not introduce an
explainability component, which is important in the medical domain to
make a system’s decisions understandable to clinicians and patients.

Some studies [11,12,40] explained models by using model-specific
feature importances. RF importance scores are, e.g., used in [40] to
compare the most important biomarkers during the prediction of dif-
ferent AD disease stages. The results achieved for 405 ADNI subjects
(148 CN, 147 MCI, 110 AD) showed, that Amyloid Positron Emission
Tomography (PET) uptake is more important in early AD stages (CN
vs. MCI), whereas neurodegeneration biomarkers including MRI vol-
umetric features and Fluorodeoxyglucose (FDG)-PET uptake are more
relevant in late stages (MCI vs. AD, CN vs. AD).

RF feature importances also explain models trained to distinguish
between 340 sMCI and 173 pMCI ADNI subjects using volumetric MRI
features of two visits, cognitive test scores, and demographic data
in [12]. The cognitive test scores reached higher feature importance
in comparison to volumetric MRI features. External validation for AIBL
was performed using 22 subjects (14 sMCI, 8 pMCI).

Overall, model-specific feature importances are not suitable for the
explanation of individual predictions, which are important in clinical
practice and are covered by local, model-independent methods like
SHAP [17] or LIME.

The global and local predictions of RFs and XGBoost models were
explained in [41] using SHAP. The dataset includes sociodemographic
and lifestyle factors to predict the patient’s AD risk. Transfer learning
reused information from the Survey of Health, Ageing, and Retirement
in Europe (SHARE) [42] (80,699 CN, 4,157 AD) to the PREVENT
cohort [43] (109 high AD risk, 364 low AD risk). The results showed
that age is the most relevant risk factor. Further identified risk factors
are less education, physical inactivity, diabetes, and infrequent social
contact. Those results support previous research [44].

The correlation between SHAP values, permutation-based feature
importance, natural feature importances (XGBoost, RF), and LR log
odds ratios was examined in [45] using classical ML methods. The
dataset included MRI volumes describing the hemispheric asymmetry,
sociodemographic features, the number of ApolipoproteinE𝜖4 (ApoE𝜖4)
lleles, and cognitive test scores. All models were trained for an ADNI
raining set and validated for an ADNI test set, the external AIBL, and
ASIS datasets. The datasets included 1,700 ADNI- (512 CN, 853 MCI,
35 AD), 612 AIBL- (446 CN, 95 MCI, 71 AD), and 921 OASIS-subjects
704 AD, 19 MCI, 198 CN). As permutation-based explanation methods
ivide feature importances between correlated features [28] and thus
educe the importance of individual features, correlated features are
onsolidated before model interpretation using aspects [29]. The results
howed a strong correlation between the SHAP values of different
odels.

Deep-learning models were often explained using heatmaps. Grad-
AM was, e.g., used in [46] to explain Long Short-Term Memory-

LSTM-) [47] based Recurrent Neural Networks [48]. The experiments
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compared techniques to augment MRIs with sociodemographic and
genetic data. Those models were trained for the CN vs. MCI task using
the AD subset [49] of the Heinz Nixdorf Risk Factors Evaluation of
Coronary Calcification and Lifestyle (RECALL) (HNR) [50] (61 MCI and
59 CN) and ADNI-1 [30] (397 MCI, 227 CN). The heatmaps focused on
biologically plausible regions.

The connection between summed relevance scores of heatmaps
in the hippocampus area and hippocampal volumes was investigated
in [51] using Layer-wise Relevance Propagation (LRP) [52]. The models
were trained using 3D MRIs of 663 ADNI-GO/2 subjects (254 CN, 220
MCI, 189 AD) and validated using subjects from ADNI-3 (326 CN, 187
MCI, 62 AD), AIBL (448 CN, 96 MCI, 62 AD) and German Center for
Neurodegenerative Diseases (DZNE) multicenter observational study
on Longitudinal Cognitive Impairment and Dementia (DELCODE) [53]
(215 CN, 155 MCI, 104 AD). The experiments found, that the hip-
pocampus area is the most relevant AD brain structure. The summed
relevance scores of the hippocampus correlated with the hippocampus
volumes.

The results of three heatmap methods, namely LRP [52], Integrated
Gradients [54], and Guided GradCAM [19] were compared to the
results of a VBM meta-analysis in [55]. The DL models were trained
to classify 252 CN and 250 AD ADNI subjects using 3D MRIs. For each
explanation method, the mean heatmap intensity of all subjects was
calculated and the accordance with the ground truth was calculated.
The Dice scores showed a moderate correlation between the heatmaps
and the ground truth. A comparison to SVM coefficients revealed that
the LRP heatmaps Dice-Scores outperformed the SVM coefficients.

A comparison between a 3D-DL model trained on MRI scans, and
a gradient boosting classifier, trained on tabular volume and cortical
thickness data, automatically extracted from MRI scans was performed
in [56]. All models were trained on 2619 MRI scans (782 CN, 1089 MCI,
748 AD) from 682 subjects of the ADNI dataset. External validation was
performed on a subset of 2045 subjects from the National Alzheimer’s
Coordinating Center (NACC) study. Relevant brain regions for the
DL model were extracted using the Saliency heatmap explainability
method. The impurity-based feature importance scores were imple-
mented to rank the features of the gradient boosting classifier. The
results of the experiments showed improved classification performance
of the DL model compared to the gradient boosting classifier during the
internal and external validation. In addition, the DL model was found
to focus on a higher number of brain regions, some of which have not
been previously associated with AD. The gradient boosting classifier
focused mainly on the hippocampus region. However, the results of
the study are only calculated for one DL and ML model, which makes
a more systematic comparison of multiple ML models, DL models and
explanatory methods important.

Recently, no previous research has done a systematical, extensive,
and quantitative comparison between 3D DL heatmaps and tabular
data taking into account correlation structures and model calibration.
To investigate this question, DL-based activations based on GradCAM,
GradCAM++, SHAP, and LIME of pre-segmented cortical and subcor-
tical brain structures are summarized in this research. Model calibra-
tion [26] and feature correlation [57], which affect the explainability
were prevented using Platt scaling [27] and aspect consolidation [29].
Most DL models trained in previous research suffered from information
leakage [3]. In this work, special attention was given to the splitting of
training and test sets, which were split at the subject level.

3. Materials and methods

This section describes the datasets used to train the ML and DL
models, validate the results and perform the explanations, as well as
introduces explainability methods and VBM used in this work.
3

Table 1
Demographic data, and MRI field strength of the selected ADNI subjects, separated by
diagnosis groups. For continuous features, mean and standard deviation are given.

Diagnosis n Age (years) Females (%) 1.5 T (%) 3 T (%)

ADNI

CN 512 74.20 ± 5.82 51.76 44.00 56.00
AD 335 74.95 ± 7.74 44.78 57.00 43.00

𝛴 847 74.50 ± 6.66 49.00 49.00 51.00

AIBL

CN 446 72.53 ± 6.14 56.95 19.06 80.94
AD 71 73.26 ± 7.88 59.15 16.90 83.10

𝛴 517 72.63 ± 6.41 57.25 18.76 81.24

OASIS

CN 704 68.35 ± 9.27 58.66 12.36 87.64
AD 198 75.62 ± 7.92 48.48 10.61 89.39

𝛴 902 69.94 ± 9.48 56.43 11.97 88.03

3.1. Datasets

Data used in the preparation of this article were obtained from
ADNI [30], AIBL [31], and OASIS [32]. ADNI4 [30] was launched
in 2003 as a public–private partnership, led by Principal Investiga-
tor Michael W. Weiner, MD. The primary goal is to test whether a
combination of biomarkers can measure the progression of MCI and
AD. These biomarkers include MRI, PET, biological markers, as well
as clinical and neuropsychological assessments. The ongoing cohort
recruited subjects from more than 60 sites in the United States and
Canada and consisted of four phases. The dataset was downloaded on
2020-07-27 and initially included 2250 subjects.

AIBL5 [31], launched in 2006, is the largest AD study in Australia.
IBL aims to discover biomarkers, cognitive tests, and lifestyle factors.
s AIBL focuses on early AD stages, most subjects are CN. AIBL data
3.3.0 was downloaded on 2019-09-19 and originally included 858
ubjects.

The aim of the Open Access Series of Imaging Studies (OASIS)
,6 [32] is, to investigate the effects of healthy aging and AD. OASIS-3
ubjects were recruited from several ongoing studies in the Washing-
on University Knight AD Research Center (KnightADRC).7 The lon-

gitudinal dataset included MRI, fMRI, Amyloid-, and FDG-PET scans,
neuropsychological tests, and clinical data for 1098 subjects.

The subject selection process was previously described [45] in
more detail. The demographics and MRI field strengths of the selected
subjects and scans are summarized in Table 1. The selection of the MRI
scans is described in Section 4.1.

3.2. Explainability methods

Explainability methods [8] were divided into model-specific and
model-agnostic methods. Another distinction is made between global
methods explaining the overall feature relevance, and local methods
interpreting individual predictions.

3.2.1. Permutation-based feature importance
Permutation-based feature importance [5] is a global, model-agn-

ostic method. The relevance of a feature is computed by first calculating
the model’s performance for the original feature set, and afterwards
recomputing the accuracy for a dataset with permuted values for a
single feature. The feature importance is defined as the mean differ-
ence between the baseline performance and the performance of the
permuted dataset in multiple repetitions.

4 ADNI: https://adni.loni.usc.edu, Access: 2024-01-23.
5 AIBL: https://aibl.csiro.au/, Access: 2024-01-23.
6 OASIS 3: https://www.oasis-brains.org/ Access: 2024-01-23.
7
 KnightADRC: https://knightadrc.wustl.edu/, Access: 2024-01-23.

https://adni.loni.usc.edu
https://aibl.csiro.au/
https://www.oasis-brains.org/
https://knightadrc.wustl.edu/
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3.2.2. LIME
LIME [18] is a local explanation method that explains the black-

box model predictions 𝑓 of individual observations 𝑥 by training local
surrogate models 𝑔∗(𝑥). To explain an individual model prediction,
LIME generates a new dataset containing data near the observation
at interest based on perturbations. For this dataset, an explainable
regression model is fit as a local surrogate. The dataset observations
are weighted based on their proximity (𝜋𝑥) to the original observation.
In the local optimization function (Eq. (1)), 𝐿(𝑓, 𝑔, 𝜋𝑥) describes the loss
between the black-box model 𝑓 and the local explanation model 𝑔.

𝑔∗(𝑥) = argmin
𝑔∈𝐺

𝐿(𝑓, 𝑔, 𝜋𝑥) +𝛺(𝑔) (1)

The explanation model complexity is regularized by 𝛺(𝑔). The original
LIME algorithm works with a linear loss function (Eq. (2)), K-Least
Absolute Shrinkage and Selection Operator- (K-LASSO) [18] for feature
regularization, and an exponential kernel as the proximity function.
The resulting LIME values depend on the feature relevance in the
explanation model.

𝐿(𝑓, 𝑔, 𝜋𝑥) =
∑

𝑧,𝑧′∈𝑍
𝜋𝑥(𝑧)(𝑓 (𝑧) − 𝑔(𝑧′))2 (2)

3.2.3. SHAP
SHAP [17] is a model-agnostic method based on Shapley values [58]

and aims to explain the individual prediction of an observation 𝑉 (𝐷)
by feature expressions 𝐷 = {1,… , 𝑛}. 𝑉 (𝐷) is the prediction probability
of a subject belonging to a predefined class. The summed SHAP values
(Eq. (3)) are equal to the difference between the individual prediction
𝑉 (𝐷) and the average model prediction 𝛷0.

𝑉 (𝐷) = 𝛷0 +
𝑛
∑

𝑖=1
𝛷𝑖 (3)

The exact calculation of SHAP values (Eq. (4)) requires the model
retraining for each subset 𝑆 of features, leading to an exponential in-
crease in the computational effort. Kernel SHAP [17] is one possibility
for time-efficient estimation.

𝛷𝑖 =
∑

𝑆⊆𝐷⧵{𝑖}

𝑉
(

𝑆 ∪ {𝑖}
)

− 𝑉 (𝑆)
(

𝑛 − 1
|𝑆|

) (4)

Kernel SHAP uses LIME to fit an additive linear model (Eq. (5))
with a simplified representation (𝑥′) of the input features and the
explanation model 𝑔(𝑥′). The weights 𝛷𝑖 of 𝑔(𝑥′) estimate the SHAP
values. For tabular data, the simplified features are binned, binary
feature representations of the presence or absence of an expression,
for image data, superpixels are used. 𝑀 is the number of simplified
features.

𝑔(𝑥′) = 𝛷0 +
𝑀
∑

𝑖=1
𝛷𝑖 ⋅ 𝑥

′
𝑖 (5)

The LIME parameters [17] used for SHAP estimation are described
in Eqs. (6) and (7). 𝛺(𝑔) is set to zero and ℎ𝑥(𝑥′) = 𝑥 maps the
simplified features to the original feature space. In this work, global
SHAP relevance was systematically computed as the sum of all absolute
local SHAP values.

𝜋𝑥(𝑥′) =
𝑀 − 1

(𝑀
|𝑥′|

)

⋅ |𝑥′| ⋅ (𝑀 − |𝑥′|)
(6)

𝐿(𝑓, 𝑔, 𝜋𝑥′ ) =
∑

𝑥′∈𝑋

(

𝑓
(

ℎ𝑥(𝑥′)
)

− 𝑔(𝑥′)
)2

⋅ 𝜋𝑥′ (𝑥′) (7)

3.2.4. GradCAM/GradCAM++
GradCAM [59] is a model-specific method to locally explain black-

box CNN predictions based on feature activation maps and model
gradients. The result of GradCAM is a heatmap 𝐿𝑐

𝐺𝑟𝑎𝑑𝐶𝐴𝑀 which high-
lights the most relevant regions in an image for the prediction of
class 𝑐. For each input image, the gradients were computed for class 𝑐
4
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and concerning feature map activations 𝐴𝑘. The activations have the
dimensions 𝑑 × ℎ of the last convolutional network layer 𝑘. Global
average pooling was applied to the gradients of each feature map to
calculate their relevance 𝛼𝑐𝑘 (Eq. (8)).

𝑤𝑐
𝑘 = 1

𝑑 ⋅ ℎ

𝑑
∑

𝑖=1

ℎ
∑

𝑗=1

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗

(8)

The relevance scores determine the influence of each feature map.
Rectified Linear Units (ReLU) [60] were applied as the activation
function (Eq. (9)) to calculate the GradCAM heatmap.

𝐿𝑐
𝐺𝑟𝑎𝑑𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈 (

∑

𝑘
𝛼𝑐𝑘𝐴

𝑘) (9)

GradCAM++ [20] is an advanced version of GradCAM. It com-
pensates for the problem of recognizing multiple occurrences of one
class in an image and improves heatmap localization. GradCAM++ is
a generalization of GradCAM where 𝛼 is the importance of location 𝑖, 𝑗
in the activation map 𝐴𝑘 (Eq. (10)), which depends on higher-order
derivatives.

𝑤𝑐
𝑘 =

𝑑
∑

𝑖=1

ℎ
∑

𝑗=1
𝛼𝑘𝑐𝑖𝑗 ⋅ 𝑅𝑒𝐿𝑈 (

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖𝑗
) (10)

.3. Voxel-based morphometry (VBM)

Voxel-Based Morphometry (VBM) [61] is a method to do a com-
arison of voxel-wise gray-matter (GM), white matter (WM), or CSF
oncentration between groups of subjects. First, brain scans of all
ubjects are spatially normalized to a reference brain so that they
re all in the same stereotactic space. Second, the GM, WM, and CSF
oncentration of each voxel is computed considering the position and
he voxel intensity. The resulting 3D scans are smoothed. In the end,
tatistical tests compare the groups in a voxel-wise manner. To avoid
ias regarding multiple statistical testing, a correction is performed.

. Approach

The following section describes the workflow developed for early
D detection shown in Fig. 1. The MRI pre-processing was implemented
sing FreeSurfer v6.0 [62] and the programming language Python
3.6.9 [63] was used for hyperparameter tuning and model training.
he workflow implementation and the IDs of the scans are available
nline.8

.1. MRI selection, pre-processing, and feature extraction

To directly compare the relevance of brain regions between DL and
lassical ML models, contrary to previous work [45] all experiments
re based exclusively on data extracted from MRIs. For each subject,
ne baseline T1-weighted MRI was selected. As previously explained
n [45], the baseline scans which were included in the adnimerge
ataset were selected. The acquisition parameters differed between
tudies and scanners. During the ADNI-1 study phase, scans were
ecorded using a field strength of 1.5 T. In the remaining ADNI study
hases, MRIs with a field strength of 3.0 T were recorded (Table 1).
espite differences in the images of both field strengths, which might

ntroduce some bias, it was decided to include scans of both field
trengths to increase the size of the data set. The effect of the field
trengths on the classification performance is investigated in later
xperiments which are described in Section 5.2. The MRIs of the AIBL
ataset followed the protocol of the ADNI 3D T1-weighted sequences.
ll AIBL scans had a resolution of 1 × 1 × 1.2 mm. The OASIS-3 dataset

ncluded T1-weighted MRIs, recorded on three scanners [32].

8 GitHub Repository:
ttps://github.com/LouiseBloch/AlzheimerSystematicXAIComparison.

https://github.com/LouiseBloch/AlzheimerSystematicXAIComparison
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Fig. 1. ML-Workflow including MRI pre-processing and feature extraction. The dataset
was split into an 80% training set, a hold-out 20% test set, and the external validation
data. Hyperparameter tuning included CV, which was reused for model calibration.
Model training included 3D DL and classical ML. Correlated features were consolidated
into aspects. Model interpretation includes SHAP, LIME, permutation-based importance,
GradCAM, and GradCAM++.

FreeSurfer v6.0 [62] was used for MRI pre-processing, segmentation
of cortical and subcortical brain structures, and volume extraction. All
scans were segmented into 113 regions including 30 cortical areas
per hemisphere of the Desikan–Killiany–Tourville (DKT) atlas [64], 41
subcortical areas [65], five areas of the corpus callosum, the left and
right cerebral cortex, left and right unknown and undetermined tissue,
as well as the background (unknown). Using this segmentation, for all
structures except for the left and right cerebral cortex, left and right un-
known and undetermined tissue, as well as the background (unknown),
volumes were extracted using FreeSurfer. All volumes were normalized
for the estimated Total Intracranial Volume (eTIV) [66]. The resulting
volumetric dataset includes 107 features (106 brain regions as well
as the eTIV) which were used to train all classical ML models. A list
of these features can be found in Suppl. Mat. A. During the training
of these classical ML models, all features were centered and scaled.
The pre-processing parameters were calculated for the training set and
applied to the training, test, and external validation sets.

For DL, the MRIs were affinely registered to the MNI305 atlas [67],
the intensities were normalized, and skull stripping was performed. The
FreeSurfer-based pre-processing resulted in images of size 256 × 256 ×
56 px. During model training, the intensities were scaled, and a
andom spatial crop of size 224 × 224 × 224 px was extracted. During
5

Table 2
Hyperparameters and intervals used for hyperparameter tuning.

Model Hyperparameter Values

DT criterion {‘‘gini’’, ‘‘entropy’’}
splitter {‘‘best’’, ‘‘random’’}
max_depth {2, 4,… , 20, 𝙽𝚘𝚗𝚎}
max_features {‘‘sqrt’’, ‘‘log2’’, None}

XGBoost n_estimators {100, 200,… , 500}
eta {0.1, 0.2,… , 1.0}
gamma {0, 2,… , 20}
max_depth {5, 10,…20}
subsample {0.5, 0.6,… , 0.9}
colsample_bytree {0.5, 0.6,… , 0.9}

RF n_estimators {100, 200,… , 1000}
criterion {‘‘gini’’, ‘‘entropy’’}
max_features {‘‘sqrt’’, ‘‘log2’’}

LightGBM n_estimators {100, 200, . . . , 500}
learning_rate {0.1, 0.2, . . . , 1.0}
colsample_bytree {0.5, 0.6..., 0.9}
max_depth {5, 10, . . . , 20}
subsample {0.5, 0.6, . . . , 0.9}
num_leaves {10, 20, . . . , 50}

SVM poly C {10−5 , 10−4 ,… , 105}
degree {1, 2,… , 10}
gamma {‘‘scale’’, ‘‘auto’’}

SVM rbf C {10−5 , 10−4 ,… , 105}
gamma {‘‘scale’’, ‘‘auto’’}

DenseNet lr {10−5 , 10−4 ,… , 10−1}
optimizer {‘‘sgd’’, ‘‘adam’’, ‘‘rmsprop’’}
scheduler {‘‘step’’, ‘‘exp’’, None}
epochs {1, 2,… , 50}

All DL lr {10−5 , 10−4 ,… , 10−1}
models optimizer {‘‘sgd’’, ‘‘adam’’, ‘‘rmsprop’’}

scheduler {‘‘step’’, ‘‘exp’’, None}
epochs {1, 2,… , 50}

model validation, the same intensity scaling, but a center-spatial crop-
ping was performed. The FreeSurfer-based segmentations were used to
group the results of the explainability methods and thus analyze the
importance of specific brain structures in the DL models.

4.2. Hyperparameter tuning and model calibration

All models were trained using the ADNI training set (80%) and
validated using the hold-out ADNI test set (20%). The splitting was
performed at the subject level and was executed within each diagnostic
group to ensure similar class distributions. The AIBL and OASIS datasets
were used for external validation. None of the validation subjects was
used during training or model selection.

A grid search hyperparameter tuning was implemented to find
the best hyperparameters. Stratified 5-fold cross-validation (CV) [68]
was implemented using Scikit-learn [69] v0.23.2 and applied to the
training part of the ADNI dataset to estimate the performance for an
independent validation set. First, the training set was split into five
distinct folds using stratification on the diagnostic level. Using these
folds, five iterations were performed, each with a different fold as the
hold-out validation set (20%). The training set included the remaining
folds (80%). The best hyperparameters calculated during the CV were
used to train the final model on the entire training set. The tuning
intervals are summarized in Table 2.

The CV-predictions generated during parameter tuning were reused
for model calibration. Platt scaling [27] was implemented using the
Python library Scikit-learn [69] v0.23.2 to reduce uncertainty which
also affects the explainability [26].

4.3. Model training

Model training was performed for two feature sets. The classical
ML models (XGBoost, RF, LightGBM, radial SVM, polynomial SVM,
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DT, LR) were trained using volumetric features extracted from MRIs.
The XGBoost model was trained using the Python package XGBoost
v1.2.0 [6] and the LightGBM was trained using the Python package
lightgbm v3.3.2 [24]. The remaining classical ML models were imple-
mented using Scikit-learn v0.23.2 [69]. End-to-end CNNs were trained
on pre-processed 3D MRIs. The model architectures were adapted from
DenseNets, EfficientNets, and two Squeeze-and-Excitation-Networks
(SENets) which are based on the ResNet [38] and ResNeXt [70]
models. All models were loaded using the Python library MONAI
v0.8.0 [71] and trained using Pytorch v1.7.1+cu110 [72]. The ex-
act model names in MONAI are densenet121, EfficientNetBN
(‘‘efficientnet-b0’’), SEResNet152, and SEResNext101.
A visualization of the DL architectures can be found in Suppl. Mat. B - E.
During training, batch accumulation increased the mini-batch size from
2 to 64. The cross-entropy loss function was used. All experiments were
performed on an NVIDIA® DGX-1,9 supercomputer, with NVIDIA®
V10010 tensor core Graphical Processing Units (GPUs) containing 16 GB
of memory. The execution environment was an NVIDIA®-optimized11

Docker12 [73] container, running a Deepo13 image. All experiments
were executed using a single GPU.

4.4. Transfer learning for DL models

Due to the high number of parameters in DL models, those need
large datasets to generalize well. Those large datasets are not available
for AD detection. One approach to overcome this problem is transfer
learning [74]. The idea of transfer learning is to transfer knowledge
learned from one domain typically with a larger dataset to another
related field. In this paper, transfer learning was used as one possibility
to increase the performance of the 3D-DL models.

The LDM-100k dataset [75] which includes 100,000 synthetically
generated T1-weighted brain MRI scans was used for transfer learning
due to the assumption that these images are closely connected to the AD
dataset used within this paper. The dataset was split into a 60% training
set, a validation dataset covering 20%, and an independent test set
including the remaining 20% of the test set. Models were pretrained on
the unprocessed scans of the training dataset to predict the normalized
age connected to the synthetic brain scans. A hyperparameter tuning for
the learning rate was performed on the validation set. For all models,
Mean Square Error (MSE) was used as the loss function. Additional,
mixed precision, an accumulated batch size of 120, no learning rate
scheduling, as well as the Adam optimizer was used to train the models
for 50 epochs. The base DL architectures, as well as the augmentation
pipeline, are the same which are used for AD detection. The final results
are reported on the independent test set.

The resulting models were used for fine-tuning using the ADNI
dataset as is described in the remaining parts of this section.

4.5. Identify correlated features

The AD volumetric dataset contains correlated features affecting the
comparison of explainability methods regarding the biological plau-
sibility [28,57]. As permutation-based interpretation methods assume
independent input variables, correlated features lead to synthetic sub-
jects with unrealistic combinations of features. This effect can lead
to reduced relevance scores for correlated features, compared to the
resulting feature importance of independent features. For this reason,

9 DGX-1: https://www.nvidia.com/de-de/data-center/dgx-1/ Access: 2024-
1-23.
10 V100: https://www.nvidia.com/en-us/data-center/v100/, Access: 2024-
1-23.
11 NVIDIA®-Docker: https://github.com/NVIDIA/nvidia-docker, Access:
024-01-23.
12 Docker: https://www.docker.com/, Access: 2024-01-23.
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Deepo: https://github.com/ufoym/deepo, Access: 2024-01-23.
correlated features are consolidated before model interpretation into
aspects [29]. The feature correlation was calculated using Spearman
rank correlation. Hierarchical agglomerative clustering [57] with a
threshold of 𝐻 = 0.5 was used to create a dendrogram and extract the
resulting aspects. The dendrogram was computed for the volumetric
training set and applied to the FreeSurfer segmentations of the 3D
MRIs of the deep-learning pipeline. The features in an aspect were
consolidated during the LIME, SHAP, and permutation-based model
interpretation with the Python library dalex v1.4.1 [76].

4.6. Evaluation

Evaluation was performed for the ADNI test set, and the exter-
nal AIBL, and OASIS datasets. The model performances were mea-
sured using accuracy (ACC), balanced accuracy (BACC), F1-Score (F1),
Matthews correlation coefficient (MCC), and Area under the Receiver
Operating Curve (AUROC). Comparability to related research was in-
creased using multiple metrics for evaluation. In comparison to accu-
racy, the F1-Score focuses on incorrectly classified cases. The macro av-
eraging F1-Score was calculated to address both, diseased and healthy
subjects. Balanced accuracy is based on sensitivity and specificity and
thus suits to evaluate imbalanced class problems. The MCC and AUROC
also suit imbalanced datasets.

The AUROC models the relationship between the True Positive
Rate (TPR) and the False Positive Rate (FPR) for different confidence
thresholds and is thus independent of model calibration. For better
readability, all metrics except for the MCC, which is a correlation
coefficient with a range of (−1, 1), are given as percentage values.

4.7. Model interpretation

For the black-box model interpretation, the local and global rel-
evance of predefined brain structures was computed using multiple
methods. The model-specific GradCAM and GradCAM++ methods were
implemented using the Python library MONAI v0.8.0 [71]. The MONAI
standard implementation included post-processing, which linearly scales
the intensities to a range of [1, 0] and thus flips the magnitudes.14

For this reason, post-processing inverted the normalized GradCAM and
GradCAM++ scores. For DL models, LIME was implemented using
the Python library LIME v0.2.0.1 [18] and the Python library SHAP
v0.38.115 was used to implement Kernel SHAP. For both methods,
Simple Linear Iterative Clustering (SLIC) [77] was used to generate
100 similar-sized superpixels per scan. The compactness was set to 1.
Disabled superpixels were replaced by the respective pixels of an image
containing the mean intensity of all training images in each segmented
structure. For the classical ML models, LIME, SHAP, and permutation-
based model interpretation were implemented using the Python library
dalex v1.4.1 [76].

5. Results

Internal and external classification performances of the experi-
ments, volumetric feature correlation patterns, local and global expla-
nations, as well as their correlations are described in this section.

5.1. Hyperparameter tuning

The CV-results achieved during the hyperparameter tuning are sum-
marized in Table 3. The best accuracy was 89.24%±2.85 achieved for the

14 monai.visualize.class_activation_maps.default_
normalizer: https://docs.monai.io/en/stable/visualize.html, Access:
2024-01-23.

15 SHAP: https://github.com/slundberg/shap, Access: 2024-01-23.

https://www.nvidia.com/de-de/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/v100/
https://github.com/NVIDIA/nvidia-docker
https://www.docker.com/
https://github.com/ufoym/deepo
https://docs.monai.io/en/stable/visualize.html
https://github.com/slundberg/shap
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Table 3
Hyperparameters and CV-accuracies achieved during parameter tuning. The ab-
breviation TL marks the Deep-Learning models for which transfer learning was
performed on the LDM-100k dataset. The best results are highlighted in bold. Pa-
rameters: DT: {criterion, splitter, max_depth, max_features }; XGBoost:
n_estimators, eta, gamma, max_depth, subsample, colsample_bytree};

RF: {n_estimators, criterion max_features}; LightGBM: {n_estimators,
learning_rate, colsample_bytree, max_depth, subsample, num_leaves};
SVM poly: {C, degree, gamma}; SVM rbf: {C, gamma}; Deep learning models: {lr,
optimizer, scheduler, epochs}.

Model Hyperparameters CV-Accuracy
(𝑥̄ ± 𝜎)

LR – 84.81% ± 2.74
DT {‘‘gini’’, ‘‘best’’, 6.0, ‘‘sqrt’’} 79.20% ± 2.16
XGBoost {400, 0.1, 0, 5, 0.6, 0.7} 89.09% ± 2.84
RF {1000, ‘‘gini’’, ‘‘log2’’} 87.61% ± 3.49
LightGBM {500, 1.0, 0.6, 5, 0.8, 30} 89.09% ± 4.60
SVM poly {1.0, 1, ‘‘scale’’} 𝟖𝟗.𝟐𝟒% ± 𝟐.𝟖𝟓
SVM rbf {1.0, ‘‘auto’’} 88.65% ± 2.75
DenseNet {10−4, ‘‘none’’, ‘‘adam’’, 29} 87.02% ± 0.95
DenseNet TL {10−2, ‘‘none’’, ‘‘adam’’, 39} 87.17% ± 1.82
EfficientNet {10−3, ‘‘none’’, ‘‘adam’’, 89} 86.44% ± 3.04
EfficientNet TL {10−3, ‘‘none’’, ‘‘adam’’, 87} 88.94% ± 3.18
SEResNet {10−4, ‘‘none’’, ‘‘adam’’, 77} 88.05% ± 1.82
SEResNeXt {10−3, ‘‘none’’, ‘‘adam’’, 67} 87.46% ± 1.46

polynomial SVM. The DT reached the worst results of 79.20%±2.16. The
DenseNet model trained from scratch on the original 3D MRIs reached a
CV-accuracy of 87.02%±0.95. The pretrained DenseNet model achieved
a slightly better performance of 87.17% ± 1.82. For the EfficientNet,
SEResNet, and SEResNeXt models, the course of the CV-accuracy after
50 epochs has not converged. For this reason, it was decided, to train
the best-performing models for another 50 epochs. The EfficientNet
model, which was trained from scratch reached a CV-accuracy of
86.44% ± 3.04, which is slightly worse than the performance achieved
for the DenseNet models. The pretrained EfficientNet outperforms this
model with a CV-accuracy of 88.94% ± 3.18. The SEResNet model
achieved a CV-accuracy of 88.05% ± 1.82 and the SEResNeXt model
reached a CV-accuracy of 87.46% ± 1.46. Overall, ML and DL models
achieved similar CV-accuracies. Except for the DT which reached a CV-
accuracy of 79.20% ± 2.16 the performances of the remaining models
was between 84% and 90%.

5.2. ADNI test set validation

The results achieved for the ADNI test set are summarized in Ta-
ble 4. As the number of epochs of the DL models depended on the
number of observations in the training set and the final model was
trained on a larger dataset than the CV-models, this number was
increased by 10%, leading to 29+ 29 ⋅ 0.1 ≈ 32 epochs for the DenseNet
which was trained from scratch, 39 + 39 ⋅ 0.1 ≈ 43 epochs for the
pretrained DenseNet, 89+89⋅0.1 ≈ 98 epochs for the EfficientNet trained
rom scratch, 87 + 87 ⋅ 0.1 ≈ 96 epochs for the pretrained EfficientNet,
7 + 77 ⋅ 0.1 ≈ 85 epochs for the SEResNet, and 67 + 67 ⋅ 0.1 ≈ 74 for the
EResNeXt models. Additionally, to obtain more robust models, Polyak
veraging was implemented. Therefore, the model parameters from the
ast five epochs were averaged to create the final model.

As previously mentioned, the LDM-100k dataset was used to train
wo models, namely DenseNet and EfficientNet with transfer learning.
he broad hyperparameter tuning of the learning rate for the DenseNet
odel leads to a learning rate of 10−2. This model achieved an MSE of
.080 on the validation dataset. For the EfficientNet model, a learning
ate of 10−5 was selected leading to an MSE of 0.145.

Consistently with the CV, the best AUROC of 96.21% was reached
or the polynomial SVM. The XGBoost, and the LightGBM which both
chieved the second-best CV-accuracy, achieved the second-best ac-
uracy (91.12%) and MCC (0.814). The LightGBM also reached the
7

econd-highest balanced accuracy of 90.34% and F1-Score of 90.65%.
Table 4
Results achieved for the hold-out ADNI test set.

Model ACC BACC AUROC F1 MCC

No information rate: 60.36%

LR 90.53% 90.11% 94.85% 90.11% 0.802
DT 81.07% 77.91% 80.00% 79.00% 0.602
XGBoost 91.12% 90.09% 96.08% 90.60% 0.814
RF 88.17% 87.38% 96.06% 87.57% 0.752
LightGBM 91.12% 90.34% 94.15% 90.65% 0.814
SVM poly 88.75% 86.59% 96.21% 87.77% 0.768
SVM rbf 88.17% 87.38% 95.49% 87.57% 0.752
DenseNet 88.17% 87.38% 89.08% 87.57% 0.752
DenseNet TL 86.39% 85.91% 93.43% 85.82% 0.716
EfficientNet 91.72% 90.58% 92.80% 91.20% 𝟎.𝟖𝟐𝟕
EfficientNet TL 85.21% 83.90% 91.98% 84.33% 0.688
SEResNet 89.94% 89.36% 92.07% 89.46% 0.789
SEResNeXt 85.21% 84.42% 93.50% 84.50% 0.690

The results reached for the LR are similar to the black-box model
performances (Accuracy: 90.53%, Balanced Accuracy: 90.11%, AUROC:
94.85%, F1-Score: 90.11%, MCC: 0.802). The DT reached the worst re-
sults (Accuracy: 81.07%, Balanced Accuracy: 77.91%, AUROC: 80.00%,
F1-Score: 79.00%, MCC: 0.602).

The best accuracy (91.72%), balanced accuracy (90.58%), F1-Score
(91.20%), and MCC (0.827) were reached for the EfficientNet which
was trained from scratch. The EfficientNet pretrained on the LDM-100k
dataset, achieved the lowest scores for all metrics except the AUROC
(Accuracy: 85.21%, Balanced Accuracy: 83.90%, AUROC: 91.98%, F1-
Score: 84.33%, MCC: 0.688) when considering only the DL models.
The DenseNet trained from scratch reached an accuracy of 88.17%,
a balanced accuracy of 87.38%, an AUROC of 89.08%, an F1-Score
of 87.57%, and an MCC of 0.752. The SEResNet model achieved an
accuracy of 89.94%, a balanced accuracy of 89.36%, an AUROC of
92.07%, an F1-Score of 89.46%, and a MCC of 0.789. Overall, both the
ML and DL models achieved similar performances, but the EfficientNet
trained from scratch attained the best results. It is noteworthy that, with
the exception of the DT, all classic ML models demonstrate superior
AUROC scores compared to the DL models. The remaining metrics do
not exhibit such a trend.

The pretrained models did not outperform the models trained from
scratch. There are different possibilities to potentially improve the
performances during model fine-tuning, these include the use of a real-
world dataset instead of the artificially generated LDM-100k dataset for
pre-training, using a preprocessed version of the LDM-100k dataset or
starting the fine-tuning for some epochs with frozen parameters. These
ideas should be addressed in more detail in future work.

It was observed that eight out of the 13 models achieved better
accuracies on the ADNI test set than during CV. For four of these
models, the improvement is smaller than one standard deviation. The
improvement for the LR is 2.09 times the standard derivation, for the
DenseNet which was trained from scratch 1.21 times the standard de-
viation, for the EfficientNet which was trained from scratch 1.74 times
the standard deviation, and for the SEResNet 1.04 times the standard
deviation. Reasons for this might be the relatively small number of
𝑛 = 169 samples in the test dataset which is caused by the overall
size of the dataset as well as that the final models were trained on a
slightly larger dataset (combination of training and validation dataset).
It was thoroughly tested that none of the subjects in the test dataset
were previously used during training or hyperparameter tuning of the
model.

The summary of the dataset in Table 1 shows that it contains MRI
scans with two different field strengths, namely 1.5 T and 3 T. The field
strength is a covariate that has an influence on the level of detail of the
MRI scans but also image artifacts. Thus it may influence the model
performance. For this reason, the model performances of both groups
are shown in Table 5. The ADNI test set includes 77 scans (45.56%)

acquired at 1.5 T, and 92 subjects (54.44%) acquired at 3 T. The no
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information rate for the 1.5 T group is 55.84% and the no information
ate for the 3 T group is 64.13%.

The results show that for most of the ML models, the metrics show
igher performances for the 3 T group in comparison to the 1.5 T

group. Exceptions to this are the DT which achieves better results for
all metrics in the 1.5 T group. It has to be mentioned, that the DT
chieved the worst results across all models. Additionally, the AUROC
f the LR, and the XGBoost, the F1-Score of the LightGBM model, as

well as the balanced accuracy and AUROC, of the polynomial SVM
performed better on the 1.5 T test set. In summary, this means that
three of the seven ML models reached better results for all metrics in
the 3 T group, one model performed better in the 1.5 T group for all
metrics, two models performed better in the 3 T group for four out of
five metrics, and one model performed better for the 3 T group for three
out of five metrics.

The DL models diverge from the trend of achieving better results
on the 3 T dataset and show a more complex pattern. Both DenseNet
models, as well as the EfficientNet model which was trained from
scratch, performed better on the 1.5 T scans in comparison to the 3 T
scans for all metrics. For the pretrained EfficientNet model, all metrics
perform better on the 3T scans. The SEResNet achieved higher results
for the 3T scans for all metrics except for the AUROC. The SEResNeXt
model performed better on the 3T scans using the accuracy, balanced
accuracy, and MCC as metrics. The AUROC and F1-Score of the same
model are better within the 1.5 T group. In summary, three of the six DL
models performed better on the 1.5 T scans for all metrics, one model
performed better on the 3 T scans for all metrics, one model reached
better results in the 3 T scans for four out of five metrics, and the last
model achieved better results in the 3 T group for three out of five
metrics

The overall results show that the performance for both groups is
reasonable and clearly outperforms the no information rate. Regarding
the classical ML models, most models achieve slightly better results in
the 3 T scan group. Exceptions from this were the DT which prefers
the 1.5 T scans and the polynomial SVM which does not indicate clear
reference. No clear preference was observed for the DL models, as
hree out of six models show better performance in the 1.5 T group.
wo models perform better in the 3T group for most metrics. The
EResNeXt model does not indicate any clear preference.

.3. External validation

The external AIBL and OASIS results are summarized in Table 6.
or AIBL, the no information rate was 86.27%. It should be noted that
he no information rate is higher in both external validation datasets
ompared to the ADNI test dataset. The imbalanced diagnostic groups
n the external datasets result in higher accuracy scores during external
alidation. Therefore, comparing accuracy scores between imbalanced
atasets is misleading and comparisons should focus on metrics that
re less impacted by class imbalances, such as balanced accuracy. All
odels except the DT (accuracy: 85.69%) and the pretrained DenseNet
odel (accuracy: 84.91%) outperformed the AIBL no information rate.
he best accuracy of 91.30% was reached for the radial SVM. The
ame model also achieved the best balanced accuracy (89.63%), F1-
core (84.09%), and MCC (0.697). Additionally, the model reached
he third-highest AUROC score of 92.37%. The best AUROC of 93.98%
as reached for the XGBoost. Within the DL models, the best results
n the AIBL dataset were reached for the SEResNeXt model (Accu-
acy: 90.91%, Balanced accuracy: 85.26%, AUROC: 90.80%, F_1-score:
2.35%, MCC: 0.652). The EfficientNet model which was pretrained on
he LDM-100k dataset reached the best AUROC score of 91.74% within
he DL models.

For OASIS, the no information rate was 78.05% and all models
utperformed this value. The best accuracy is 86.47% achieved by the
fficientNet model which was pretrained on the LDM-100k dataset.
8

his model also reached the best F1-Score of 80.41% and MCC of 0.608.
Table 5
Results achieved for the hold-out ADNI test set split between field strengths 1.5 T and
3 T.

Model ACC BACC AUROC F1 MCC

1.5 T: No information rate: 55.84%

LR 88.31% 88.30% 96.17% 86.96% 0.764
DT 81.82% 80.95% 85.47% 78.13% 0.630
XGBoost 89.61% 89.47% 96.03% 88.24% 0.789
RF 84.42% 84.82% 95.14% 83.33% 0.692
LightGBM 89.61% 89.77% 93.43% 88.57% 0.792
SVM poly 88.31% 87.38% 96.51% 85.71% 0.766
SVM rbf 85.71% 85.98% 95.28% 84.51% 0.715
DenseNet 88.31% 88.00% 93.09% 86.57% 0.763
DenseNet TL 90.91% 90.94% 95.90% 89.86% 0.817
EfficientNet 92.21% 92.10% 94.46% 91.18% 0.842
EfficientNet TL 80.52% 80.10% 90.01% 77.61% 0.604
SEResNet 87.01% 87.14% 95.69% 85.71% 0.739
SEResNeXt 83.12% 83.34% 93.43% 81.69% 0.663

3 T: No information rate: 64.13%

LR 92.39% 91.40% 93.58% 89.23% 0.834
DT 80.43% 74.06% 75.45% 65.38% 0.570
XGBoost 92.39% 90.06% 95.84% 88.52% 0.835
RF 91.30% 88.55% 97.33% 86.67% 0.812
LightGBM 92.39% 90.06% 95.02% 88.52% 0.835
SVM poly 89.13% 85.52% 95.35% 82.76% 0.766
SVM rbf 90.22% 87.70% 95.38% 85.25% 0.786
DenseNet 84.78% 82.13% 85.00% 77.42% 0.663
DenseNet TL 84.78% 82.79% 91.53% 78.12% 0.666
EfficientNet 91.30% 88.55% 91.37% 86.66% 0.812
EfficientNet TL 89.13% 86.85% 92.76% 83.87% 0.761
SEResNet 92.39% 90.73% 88.08% 88.89% 0.833
SEResNeXt 86.96% 84.49% 92.96% 80.65% 0.712

Table 6
External test results achieved for AIBL and OASIS.

Model ACC BACC AUROC F1 MCC

AIBL: No information rate: 86.27%

LR 87.62% 87.50% 91.93% 79.20% 0.617
DT 85.69% 73.94% 80.13% 72.07% 0.445
XGBoost 89.94% 87.66% 93.98% 81.87% 0.654
RF 90.72% 86.33% 92.56% 82.43% 0.657
LightGBM 90.33% 87.29% 92.70% 82.23% 0.658
SVM poly 91.10% 82.41% 92.77% 81.66% 0.633
SVM rbf 91.30% 89.63% 92.37% 84.09% 𝟎.𝟔𝟗𝟕
DenseNet 90.72% 77.45% 91.40% 79.16% 0.586
DenseNet TL 84.91% 82.37% 89.69% 74.85% 0.529
EfficientNet 89.36% 84.36% 91.45% 80.17% 0.613
EfficientNet TL 89.36% 83.77% 91.74% 79.97% 0.608
SEResNet 89.45% 82.81% 90.25% 80.10% 0.606
SEResNeXt 90.91% 85.26% 90.80% 82.35% 0.652

OASIS: No information rate: 78.05%

LR 81.60% 80.04% 85.04% 76.18% 0.541
DT 79.27% 71.65% 76.37% 70.84% 0.418
XGBoost 82.71% 80.21% 87.15% 77.11% 0.553
RF 81.93% 80.44% 87.24% 76.58% 0.548
LightGBM 82.26% 81.19% 85.37% 77.11% 0.560
SVM poly 85.25% 77.49% 86.41% 78.04% 0.561
SVM rbf 81.71% 80.48% 86.18% 76.42% 0.547
DenseNet 86.25% 79.76% 86.63% 79.87% 0.597
DenseNet TL 79.93% 78.25% 86.04% 74.28% 0.505
EfficientNet 85.37% 79.37% 87.22% 78.95% 0.579
EfficientNet TL 86.47% 80.63% 86.63% 80.41% 𝟎.𝟔𝟎𝟖
SEResNet 80.82% 77.55% 85.29% 74.65% 0.504
SEResNeXt 81.37% 78.27% 85.89% 75.35% 0.518

The best balanced accuracy of 81.19% was reached for the LightGBM
model and the best AUROC of 87.24% was achieved by the RF model.
The polynomial SVM reached the best F1-Score of 78.04% and the best
MCC of 0.561 within the classical ML model. The worst results were
reached for the DT (Accuracy: 79.27%, Balanced accuracy: 71.65%,
AUROC: 76.37%, F1-Score: 70.84%, MCC: 0.418). The DenseNet model
which was pretrained on the LDM-100k dataset reached the worst
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accuracy of 79.93% within the DL models. The SEResNet reached the
smallest balanced accuracy of 77.55% within the DL models.

Most of the models reached reasonable performances during the
external validation. It can therefore be inferred that both ML and DL
models acquired patterns that are transferable to external datasets.

5.4. Correlated features

The aspects resulting from the feature correlation analysis are
shown in Suppl. Mat. F. The 107 volumes are consolidated into 48
spects. Of those, 14 included individual features. Nine aspects included
ore than two features. At least one pair of left and right hemispheric

olumes is included within 30 aspects. Aspect_27 included eight
egions within the middle-temporal and inferior-temporal cortex, which
ere previously [78–83] associated with AD progression. Aspect_34

ncluded five ventricular regions corresponding with the association
etween ventricular enlargement and AD [79,84].

.5. Local model interpretation

The concept behind local model explanations is to identify the
egions that impact the model’s prediction for a particular subject. In
he case of LIME and SHAP, positive values denote that the model has
ecognized that a specific feature or aspect increases the subject’s risk
or AD. Conversely, negative values imply that the model has learnt
hat this feature reduces the patient’s AD risk. For both GradCAM and
radCAM++, the values suggest an impact on the prediction without

ndicating a specific direction.
In this work, two methods were employed to illustrate local expla-

ations for the ADNI AD subject 002_S_0816. First, Fig. 2 and Suppl.
at. G - M visualize MRI slices and the activated brain regions for

ifferent models demonstrated as heatmaps. These heatmaps reveal the
egions which are relevant for the predictions of the DL and ML models.
n comparison to this, Fig. 2(a) demonstrates the inverse 𝑝-value map
alculated during the VBM analysis as a ground truth heatmap. To
urther explore feature importance, a second visualization technique is
mployed. Fig. 3 visualizes a matrix displaying the contribution of each
spect to the model prediction for a specific subject. The rows show
he aspects included in this work and the columns display the models
hich were trained. The color in the matrix visualizes the feature

mportance calculated for each explanation method and each aspect.
s stated previously, for LIME and SHAP, positive values denote the
odel identified a particular aspect as increasing the subject’s risk for
D, whereas negative values indicate the model learnt that this feature
ecreases the patient’s risk. Both visualization techniques, the heatmaps
nd the feature importance plot, present identical information.

The results in Fig. 3 show that the most relevant feature for all
L models is aspect_27, which includes regions within the middle

emporal and inferior temporal cortices as well as the hippocampi and
mygdalae of both hemispheres and thus corresponds with previous AD
esearch [78–83]. The positive value means that the subject’s features
bserved for this aspect increased the patient’s AD risk. All classical
L models used additional features for the prediction of the AD sta-

us of subject 002_S_0816. Most of these features reached absolute,
ormalized values smaller than 0.2. Features which reached absolute,
ormalized values higher than 0.4 for at least one of the models and
xplanation methods are aspect_30, aspect_12, aspect_3, and
aspect_34. Aspect_30 reached values higher than 0.4 for the poly-
nomial SVM explained using SHAP, as well as LIME and SHAP expla-
nations for the LR model. For all methods, a positive association with
AD was observed. The aspect includes the caudal middle frontal gyri
of both hemispheres. Reduced cortical thickness [85,86] as well as re-
duced brain volume [86] was associated with AD in previous research.
The LIME method identified aspect_12 as a relevant feature for the
DT which reduced the AD risk of subject 002_S_0816. Aspect_12 in-
9

cludes the precuneus and superior parietal lobule of both hemispheres.
Reduction in the cortical thickness of the left superior parietal lobule
was previously associated with AD [85]. Additionally, [87] found that
the volume of the precuneus is associated with impaired visuospatial
functioning. By explaining the LR model, SHAP identifies a protective
association with AD for aspect_3, which includes the left and right
cerebellum cortex and was associated with AD progression in previous
research [88,89]. LIME identified aspect_34 as having a negative
impact on the polynomial SVM prediction. Aspect_34 includes mul-
tiple ventricular volumes and ventricular enlargement was previously
associated with AD progression [79,84].

Compared to the classical ML models, the DL models took into
consideration a higher number of regions for the prediction of the
disease status of subject 002_S_0816 as can be seen in Fig. 3.

For the DenseNet model which was trained from scratch, the most
relevant brain regions were the optical chiasm (Ranks: LIME and Grad-
CAM++: 2, SHAP and GradCAM: 3), aspect_2 (Ranks: LIME: 1,
GradCAM and GradCAM++: 6), aspect_19 (Ranks: SHAP: 1, LIME:
5), aspect_22 (Ranks: SHAP: 2), the FreeSurfer region called CSF
(Ranks: GradCAM and GradCAM++: 1, LIME and SHAP: 4), and as-
pect_5 (Ranks: GradCAM: 2, GradCAM++: 3, LIME: 6).

The optical chiasm was not one of the main brain regions previ-
ously associated with AD. However, associations between the optic
nerve [90], the visual pathway [91] and AD have been reported.
Aspect_2 includes the central and middle anterior parts of the corpus
callosum which was previously associated with AD [92]. Aspect_19
includes the left and right isthmus of the cingulate gyrus. For the left
hemisphere of this brain structure, reduced cortical thickness and sur-
face area were observed in [85]. The lingual gyri of both hemispheres
were consolidated into aspect_22. For this region of the left hemi-
sphere, reduced cortical thickness [85] was observed for subjects with
AD in comparison to CN subjects. The FreeSurfer definition of the CSF
region approximately corresponds to the transverse cerebral fissure,
which was not in focus for AD detection. However, the dilatation of
lateral parts of the transverse fissure was associated with AD in previous
research [93]. In addition, the region is located near the third ventricle
which was associated with AD progression [94]. Finally, aspect_5
includes the thalamus proper of both hemispheres. This region reached
the 3rd rank in the VBM analysis and was previously associated with
AD [95,96].

For the DenseNet model which was pretrained on the LDM-100k
dataset, especially the GradCAM and GradCAM++ methods identified
a large number of relevant brain regions. These regions include the
left vessel (Ranks: LIME and SHAP: 1), aspect_17 (Ranks: LIME
and SHAP: 2), the rostral anterior cingulate gyrus of the right hemi-
sphere (Ranks: GradCAM and GradCAM++: 1, LIME: 6), and as-
pect_2 (Ranks: GradCAM and GradCAM++: 2).

Of these regions, aspect_2 was also one of the most relevant re-
gions for the DenseNet model which was trained from scratch. Although
the regions do not include the hippocampus or entorhinal cortices
which were the most prominent regions in AD detection, all of the se-
lected regions have been associated with AD in previous research. These
associations include modalities beyond the MRI as DL methods might
detect patterns that are classically identified using different modalities
such as functional MRI (fMRI), or PET. The FreeSurfer definition of the
left vessel includes vessel regions in the inferior pallidum and putamen.
Cholinergic neuronal loss [97] as well as atrophy [98] in these regions
were previously associated with AD. Aspect_17 includes the left and
right pars opercularis regions. Previous work found altered functional
connectivity [99] of subjects with AD in this region. The functional
connectivity [100] as well as atrophy patterns [101] of different sub-
regions of the anterior cingulate cortex including the caudal anterior
cingulate cortex and the rostral anterior cingulate cortex have been also
associated with AD.

The EfficientNet model which was trained from scratch showed a
similar pattern for the prediction of the disease status of this subject.
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Fig. 2. VBM results (inverse 𝑝-value) and local explanations visualized as heatmaps on T1-weighted MRIs for ADNI AD subject 002_S_0816 . The visualization shows MRI intensities
and heatmaps for slices 50, 75, 100, 125, 150, and 175.
The most relevant regions for this model were: the 4th ventricle (Ranks:
LIME: 1), the right vessel (Ranks: LIME and SHAP: 2), aspect_29
(Ranks: SHAP: 1), aspect_9 (Ranks: GradCAM: 1, GradCAM++: 6),
aspect_30 (Ranks: GradCAM++: 1, GradCAM: 2), and aspect_2
(Ranks: GradCAM++: 2, GradCAM: 5).

Aspect_30 has been also selected as one of the most relevant
regions for the prediction of this subject for the polynomial SVM and
LR models. Additionally, aspect_2 was a relevant region for both
DenseNet models. For these regions, relevant associations in previous
10
research were discussed above. In volumetric analysis, the lateral and
inferior lateral ventricles were more affected by ventricular enlarge-
ment in AD in comparison to the 4th ventricle. Additionally, the 4th
ventricle reached the last rank during the VBM analysis. The right
vessel reached the 13th rank within the VBM analysis. The FreeSurfer
definition of the vessels includes vessel regions in the inferior pallidum
and putamen. For these regions, cholinergic neuronal loss [97] as well
as atrophy [98] were observed in association with AD. The fusiform
gyri of both hemispheres are included in aspect_29 and have been
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Fig. 3. Matrix displaying the contribution of each aspect to the model prediction for ADNI subject 002_S_0816 with diagnosis AD. The rows show the aspects included in this
work and the columns display the models which were trained. The color in the matrix visualizes the feature importance calculated for each model and each aspect. For LIME and
SHAP, positive values denote the model identified a particular aspect as increasing the subject’s risk for AD. Negative values indicate the model learned that this feature decreases
the patient’s AD risk.
associated with atrophy in the preclinical stages of AD [102]. As-
ect_9 includes the paracentral lobule of both hemispheres. Reduced
ortical thickness was previously observed for subjects with AD in
his region, in [85]. Additionally, differences in the structural cortical
etwork of the paracentral lobule were found in [103].

For the pretrained EfficientNet model, the most relevant features
ere the left vessel (Ranks: LIME: 1), aspect_17 (Ranks: LIME: 2),
spect_19 (Ranks: SHAP: 1, LIME: 6), aspect_9 (Ranks: SHAP: 2,
IME: 9), the right caudal anterior cingulate gyrus (Ranks: GradCAM
nd GradCAM++: 1), the right rostral anterior cingulate gyrus (Ranks:
radCAM: 2, GradCAM++: 6), and aspect_2. (Ranks: GradCAM++:
, GradCAM: 5, LIME: 8).

Many of these regions were also classified as relevant regions
n the DL models described above. These are the left vessel (pre-
rained DenseNet), aspect_17 (pretrained DenseNet), aspect_19
DenseNet trained from scratch), aspect_9 (EfficientNet trained from

scratch), the right rostral anterior cingulate gyrus (pretrained Dens-
eNet), and aspect_2 (included in all DL models described above).
Most of these regions were not in focus of AD detection in previous
research. However, for most regions or at least for adjacent regions
associations were found which were previously discussed. In addition
11
to this, changes within the functional connectivity [100] and atrophy
patterns [101] of different subregions of the anterior cingulate cortex
including the caudal anterior cingulate cortex and the rostral anterior
cingulate cortex have been found in subjects with AD.

The regions identified as most relevant for the local prediction
of subject 002_S_0816 using the SEResNet model were the left vessel
(Ranks: LIME, GradCAM, and GradCAM++: 1), aspect_17 (Ranks:
LIME: 2, GradCAM: 4), aspect_20 (Ranks: SHAP: 1, LIME: 5), as-
pect_2 (Ranks: SHAP: 2), aspect_25 (Ranks: GradCAM: 2, Grad-
CAM++: 5, SHAP: 6), and the optical chiasm (GradCAM++: 2, Grad-
CAM: 3 LIME: 7).

Similar to the results of the models which were described before,
this model does not concentrate on the regions which were mostly
associated with AD in previous research. However, for most of the
regions, there have been some articles that associated these or adja-
cent regions with AD progression. Some of the regions which were
identified as being relevant for the SEResNet model were also relevant
for the DL models introduced before. These regions are the left vessel
(pretrained DenseNet and pretrained EfficientNet), aspect_17 (pre-
trained DenseNet and pretrained EfficientNet), aspect_2 (included

in the local explanations of all DL models described above) and the
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optical chiasm (DenseNet trained from scratch). The integration of
these regions in previous AD detection has been discussed above. The
regions of the cuneus and pericalcarine cortices of both hemispheres
are consolidated in aspect_20. Although both regions were not the
focus of early AD prediction, for both brain structures, reduced cortical
thickness was observed in [85] for the left hemisphere. Aspect_25
included the left and right accumbens area, which also has been previ-
ously associated with AD [104]. Additionally, this region achieved the
5th rank in the VBM analysis projected to subject 002_S_0816.

For the SEResNeXt model, similar patterns were found. The most
relevant regions were: the left vessel (Ranks: LIME, GradCAM, and
GradCAM++: 1), aspect_19 (Ranks: LIME: 2), the optical chiasm
(Ranks: SHAP: 1, GradCAM and GradCAM++: 3), aspect_2 (Ranks:
SHAP: 2, LIME: 4, GradCAM: 6), aspect_25 (Ranks: GradCAM: 2,
SHAP and GradCAM++: 8, LIME: 9), and aspect_24 (Ranks: Grad-
CAM++: 2, SHAP: 5).

Many of these regions overlap with regions identified as relevant
in the different DL models trained in this work. These regions in-
clude the left vessel (SEResNet, pretrained EfficientNet, and pretrained
DenseNet), aspect_19 (pretrained EfficientNet and DenseNet trained
from scratch), the optical chiasm (DenseNet trained from scratch and
SEResNet), aspect_2 (included in the local explanations of all pre-
viously described models), and aspect_25 (SEResNet). Explanations
bout the relevance of these regions within previous research have been
iven above. Additionally, aspect_24 consolidated the entorhinal
yri and is one of the regions which are quite prominent in previous AD
esearch [79,105]. For the VBM analysis results which were projected
o the MRI scan of subject 002_S_0816, this region achieved the highest
core.

To compare the aspect rankings of the methods for the individual
xplanations of subject 002_S_0816 with a focus on highly ranked
spects, the Normalized Discounted Cumulative Gain (NDCG) was used.
he similarity plot is shown in Fig. 4. NDCG values lie in the range
etween 0 and 1. It should be noted, that due to the dependence on
eature importances, the NDCG matrix is not symmetric. Each value in
he matrix describes the normalized feature importances of a reference
ethod ranked in the order of the feature importances of the com-
arison method after applying a logarithmic discount. Changing the
eference method changes the ground truth feature importance scores,
esulting in asymmetries.

Both axes of Fig. 4 can be split into three different parts. The first
art consists of the explanations of the DL models, the second part
ncludes the explanations of the ML models and the last part is the VBM
round truth ranking.

The first experiment focuses on the rankings of the DL models.
hese are visualized in the upper left corner of the matrix. The plot
hows that most of the regional rankings of the DL models show high
imilarity across each other. The 10% quantile of all comparisons in this
roup was 0.626. This observation means, that more than 90% of the
odel comparisons show moderate to high similarities. The smallest
DCG score was 0.464 which was reached when the SHAP explanations
f the pretrained DenseNet models were compared to the GradCAM
xplanations of the same model. Overall it was observed, that most of
he models reached smaller similarities if the SHAP explanations of the
retrained DenseNet models were used as reference method.

The second experiment investigates the similarities in the feature
ankings across ML models. The data for this experiment can be found
n the lower right corner of the matrix. The results showed higher
imilarities in this group in comparison to the DL models. The smallest
DCG score in this comparison was 0.791 which was reached by
omparing the SHAP explanations of the LR to the LIME explanations of
he LightGBM model. This leads to the conclusion, that all ML models
how moderate to high similarities in the feature rankings.

Due to the fact that the NDCG scores are not symmetric, two
ifferent experiments are possible for the comparison of ML and DL
12

eature importance. The first comparison uses the DL explanations as a e
reference and can be found in the upper right corner of the matrix.
These comparisons showed smaller similarities than the DL models.
The NDCG scores were between 0.496 and 0.917. The smallest score
was reached for the comparison between the SHAP explanations of the
pretrained DenseNet and the LIME explanations of the LR model. The
highest score was reached when the GradCAM++ explanations were
compared to the LIME explanations of the XGBoost model. The 10%
quantile of the data was 0.589.

The second experiment uses the ML models as a reference method.
It can be seen that those comparisons achieved worse NDCG scores
than the previously described comparison. All values are in the range
of 0.234 and 0.726. The 10% quantile is 0.314. The comparison
which achieved the smallest NDCG score was the comparison between
the SHAP explanations of the DT and the LIME explanations of the
DenseNet trained from scratch. The highest similarity was reached
for the comparison of the LIME explanations of the LR model and
the GradCAM++ explanations of the EfficientNet model trained from
scratch.

The results show that there are structural differences in the local
feature explanations between DL and classical ML models for subject
002_S_0816. The classical ML models focus on a small number of
features and all prefer regions which were previously associated with
AD such as the hippocampi and middle temporal gyri. The DL models
instead focused on a larger number of regions and combined regions
which were in the focus of AD in previous research, like aspect_24
nd regions which were not prominent in AD detection before. How-
ver, for most of the regions, previous research was found that shows
ome associations with these regions in different modalities.

The comparison to the VBM analysis (last row of Fig. 4) shows high
imilarities for both, ML and DL models. The DL models reached NDCG
cores between 0.753 which was reached for the LIME explanations
f the DenseNet model and 0.890 which was achieved for the Grad-
AM++ explanations of the SEResNeXt model. The 10% quantile was
.772. The results reached for the classical ML models were higher
han those achieved for the DL models. The NDCG scores were in the
ange of 0.834 which was reached for the local SHAP explanations of
he LR model and 0.922 achieved for the SHAP explanations of the
F. The 10% quantile was 0.840. An analysis showing similar results,
as performed for the ADNI CN subject 941_S_4292. These results are

hown in Suppl. Mat. 𝑁 - W.

.6. Global model interpretation

In this section, the global rankings of the activated brain regions
or the ML and DL models were presented and compared to each other.
he most relevant brain regions to differentiate subjects with AD from
N subjects were investigated using feature importance in classical ML
ethods as well as mean absolute heatmap activations per aspect in DL
odels.

As a ground truth comparison, VBM is used. The registration and
M segmentation are implemented using the CAT12 software [106],
hich is based on the SPM [107]. Smoothing was performed using a
aussian kernel with a full-width at half-maximum (FWHM) of 8 mm.
n ANCOVA statistical test was implemented using the Python package
ingouin v0.5.3 [108]. The model was corrected for the covariates age,
ender, MRI-field strength, and eTIV. The Bonferroni correction [109]
as used to correct for bias due to multiple testing. It was implemented
sing the Python package statsmodels v0.13.2 [110]. The significance
evel was set to 𝛼 = 0.01. As ground truth, aspect-wise region impor-
ance was calculated using the mean inverted 𝑝-value. The ten most
mportant aspects and their mean inverted p-values were summarized
n Fig. 5. The most important aspect was aspect_27. Aspect_27
ncludes regions within the middle temporal and inferior temporal
ortex, also associated with AD in previous research [78–83]. The
econd most important region was aspect_24, which includes the

ntorhinal gyri and was previously associated with AD [79,105]. The
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Fig. 4. Correlation plot showing the Normalized Discounted Cumulative Gain (NDCG) between local feature importances of the explainability methods for AD subject with ID
002_S_0816. The correlation matrix is not symmetric because the NDCG is based on feature importance scores of the features visualized as rows (reference method) and rankings
visualized as columns (comparison method). Changing the reference method changes the ground truth feature importance scores, resulting in asymmetries.
l
w

Fig. 5. Mean inverted 𝑝-value of aspects calculated during VBM.

third most relevant region was aspect_5, including the Thalamus-
Proper of both hemispheres. The thalamus was connected to AD in the
previously published literature [95,96].
13

e

The global LIME and SHAP feature rankings of the polynomial SVM
are summarized in Fig. 6 using SHAP summary plots. The SHAP and
LIME values were calculated by consolidating correlated features into
aspects. In these plots, the interactions of the importance scores and
the feature values are visualized for individual volumes to improve
interpretability. This leads to identical SHAP and LIME value distribu-
tions for all features in an aspect. The aspects are stated behind the
feature names. The plots show that aspect_27, including the volumes
of the left and right hippocampi, the amygdalae, the middle temporal,
and the inferior temporal gyri, was most important. Decreased brain
volumes (blue) are associated with AD. All regions consolidated in
aspect_27 were previously connected with AD [78–83] and the
relationship, the model learned corresponds to the atrophy pattern.
The same applies to aspect_24 [79,105] which ranked second using
SHAP and fourth using LIME. Aspect_24 includes the volumes of the
eft and right entorhinal gyri. The second most important LIME aspect
as aspect_34, including multiple ventricular volumes. Ventricular
nlargement was previously associated with AD [79,84] and matches
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Fig. 6. Global feature importances for polynomial SVM, ADNI training set.

Fig. 7. Heatmap showing the global, normalized feature importances for the DL and classical ML models using different explanation methods.
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the pattern, the model learned. Aspect_34 was ranked third for
SHAP.

Fig. 7 shows a heatmap summarizing the normalized feature im-
portances calculated for the DL and ML models using the described
explanation methods. The DL feature importances include mean local
GradCAM and GradCAM++ scores on the training set for the FreeSurfer
segmented brain structures which are consolidated into aspects. For
SHAP and LIME, the absolute sum of all local scores was calculated
to take into account both protective and progressive regions.

The results show that similar to the polynomial SVM, all ML models
strongly focus on aspect_27. As was previously mentioned, as-
ect_27 includes regions within the middle temporal and inferior

emporal cortex, which were strongly associated with AD in previous
esearch [78–83]. Aspect_27 is also the region which reached the
ighest scores during the VBM analysis. Beyond aspect_27, the
lassical ML models ranked different regions with smaller importance
cores. These regions include aspect_24 consisting of the left and
ight entorhinal gyri, aspect_34 consisting of ventricular volumes, as
ell as aspect_10 consisting of the postcentral and precentral gyri.
or the entorhinal gyri, atrophy patterns were previously associated
ith AD [79,105]. For aspect_34, ventricular enlargement has been

dentified as a relevant sign for AD [79,84]. Previous research shows
educed cortical thickness for subjects with AD in the postcentral and
recentral gyri [85].

In comparison to this, all DL models show high feature importance
or a wider range of regions. For the DenseNet model, which was
rained from scratch, the optical chiasm was identified as one of the
ost important regions (Ranks: LIME and SHAP: 1, GradCAM++: 2).
dditionally, aspect_25 (Ranks: SHAP: 2, GradCAM++: 4) which

ncludes the left and right accumbens area, the FreeSurfer CSF re-
ion (Ranks: GradCAM++: 1, LIME: 2, SHAP: 3), aspect_6 (Ranks:
radCAM: 2, LIME: 7, SHAP: 8) which includes the Cerebellum White
atter and the Diencephalon of both hemispheres, as well as the brain

tem, and the 4th ventricle (Ranks: GradCAM: 1, GradCAM++: 8) were
dentified as relevant regions for this model.

The optical chiasm was not one of the main MRI regions previ-
usly associated with AD. However, associations between the optic
erve [90], the visual pathway [91] and AD were reported. The left
nd right accumbens area was previously associated with AD in [104]
nd achieved the 7th rank in the VBM analysis. The CSF region ap-
roximately corresponds to the transverse cerebral fissure, which was
ot in focus for AD detection in previous literature. However, [93]
ound some connection between the dilatation of lateral parts of the
ransverse fissure and AD. The left and right Cerebellum White Matter,
he brain stem, as well as the left and right ventral Diencephalon are
ot in focus in most AD analyses. However, there is some previous
esearch that identified changes in the morpho-functional mesoscopic
raits [111] as well as amyloid plaques [112] in these regions. In
olumetric analysis, the lateral and inferior lateral ventricles were more
ffected by ventricular enlargement in AD in comparison to the 4th
entricle.

The most relevant regions chosen by the pretrained DenseNet model
re the right (Ranks: LIME and SHAP: 1) and left vessels (Ranks:
IME, SHAP, GradCAM and GradCAM++: 2), and aspect_17 (Ranks:
radCAM and GradCAM++: 1) which includes the left and right pars
percularis regions.

The FreeSurfer definition of the vessels includes vessel regions in the
nferior pallidum and putamen. For these regions, cholinergic neuronal
oss [97] as well as atrophy [98] were observed in association with
D. Additionally, the left vessel reached the 11th rank within the VBM
nalysis and the right vessel was ranked 14th. Aspect_17 includes
he left and right pars opercularis regions. This region is not in the
ocus of AD research in previous articles. However, altered functional
onnectivity [99] of subjects with AD was identified previously in this
15

egion. t
The EfficientNet which was trained from scratch achieved high
eature importance for the left vessel (Ranks: LIME: 1, SHAP: 2),
spect_19 (Ranks: SHAP: 1, LIME: 2) which includes the left and
ight isthmus of the cingulate gyri, aspect_9 (Ranks: GradCAM: 1,
radCAM++: 8), consolidating the paracentral lobule of both hemi-

pheres, aspect_10 (Ranks: GradCAM: 2, GradCAM++: 6) consisting
f the postcentral and precentral gyri, aspect_30 (GradCAM++: 1,
radCAM: 3) which includes the caudal middle frontal gyri of both
emispheres, and aspect_2 (GradCAM++: 2, GradCAM: 7) which
onsolidates the caudal middle frontal gyri of both hemispheres. The
eft vessel was also selected as a relevant region for the pretrained
enseNet model. For the left isthmus of the cingulate gyrus, reduced
ortical thickness and surface area were observed in [85]. For the
aracentral lobule of both hemispheres, reduced cortical thickness
as previously observed for subjects with AD in [85]. Additionally,
ifferences in the structural cortical network of the paracentral lobule
ere found in [103]. Aspect_10 consists of the postcentral and
recentral gyri. Previous research shows reduced cortical thickness for
ubjects with AD in these regions [85]. For the caudal middle frontal
yri of both hemispheres, reduced cortical thickness [85,86] and brain
olume [86] were associated with AD. The central and middle anterior
arts of the corpus callosum were consolidated in aspect_2 and have
een previously associated with AD progression [92].

The relevant regions identified for the EfficientNet which has been
retrained on the LDM-100k dataset were the left vessel (Ranks: LIME
nd SHAP: 1), the optical chiasm (Ranks: LIME and SHAP: 2, GradCAM:
, GradCAM++: 9), middle posterior parts of the corpus callosum
Ranks: GradCAM and GradCAM++: 1), aspect_4 (Ranks: GradCAM:
, GradCAM++: 5), which includes the pallidum of both hemispheres
nd aspect_26 (Ranks: GradCAM++: 2, GradCAM: 3). As was pre-
iously described, the optical chiasm has been selected as one of the
ost relevant regions in the DenseNet model which was trained from

cratch. The left vessel was selected for the pretrained DenseNet, as well
s both EfficientNet models. Different parts of the corpus callosum were
lso associated with AD in previous research [92]. Cholinergic neuronal
oss within the pallidum was associated with AD in [97]. Aspect_26
onsolidated the posterior cingulate cortex of both hemispheres and
eached the 9th-highest relevance score during the VBM analysis. Atro-
hy [101] within the posterior cingulate cortex was previously found
s an early sign of AD.

For the SEResNet model, the most relevant brain regions were:
spect_22 (Ranks: LIME: 1, SHAP: 4), aspect_20 (Ranks: SHAP:
, LIME: 2), consolidating the regions of the cuneus and pericalcarine
ortices of both hemispheres, the right (Ranks: SHAP: 2, LIME: 5),
nd left vessels (Ranks: GradCAM: 1, GradCAM++: 2), and the optical
hiasm (Ranks: GradCAM++: 1, GradCAM: 2).

Some of these regions overlap with the regions selected in different
L models and have been thus already discussed above. These regions
re the right vessel (pretrained DenseNet), the left vessel (pretrained
enseNet, both EfficienNets), and the optical chiasm (DenseNet trained

rom scratch and pretrained EfficientNet). Aspect_22 includes the
ingual gyrus of both hemispheres. In the left hemisphere of this region,
educed cortical thickness [85] was observed for subjects with AD. Al-
hough the cuneus and pericalcarine regions were not the focus of early
D prediction, for both brain structures, reduced cortical thickness was
bserved in [85] for the left hemisphere.

The most relevant regions identified for the SEResNeXt model are
he right vessel (Ranks: LIME and SHAP: 1), aspect_19 (Ranks: LIME
nd SHAP: 2, GradCAM: 8), which includes the left and right isthmus
f the cingulate gyri, the left vessel (Ranks: GradCAM: 1), the 4th
entricle (Ranks: GradCAM: 2, LIME and SHAP: 3, GradCAM++: 6),
he FreeSurfer CSF region (Ranks: GradCAM++: 1, GradCAM: 7) and
he optical chiasm (Ranks: GradCAM++: 2). All of these regions were
lso identified as highly relevant regions in the DL models described
efore. The left vessel was included in the explanations of the pre-

rained DenseNet, both EfficientNet models as well as the SEResNet
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model. The right vessel overlaps with the explanations of the pretrained
DenseNet and the SEResNet model. Aspect_19 was already included
in the EfficientNet model trained from scratch. The 4th ventricle was
also selected in the explanations of the DenseNet model trained from
scratch. The FreeSurfer CSF region was included in the explanations of
the DenseNet model trained from scratch. Finally, the optical chiasm
was selected as a relevant region in the explanations of the DenseNet
model trained from scratch, the pretrained EfficientNet model, and the
SEResNet model.

It has been previously mentioned that aspect_27 which includes
egions within the middle temporal and inferior temporal cortices,
.g. the hippocampi of both hemispheres, was the most relevant region
or the classical ML models and was also the focus of previous AD
esearch [78–83]. This region was not one of the most relevant regions
dentified for the DL models. However, all explanation methods of
he DL models weighted this region with a relevance score larger
han 0. The smallest normalized feature relevance score of 0.185 was
alculated for the SHAP explanations of the DenseNet model trained
rom scratch. The highest normalized feature relevance score was 0.822
hich was calculated for the GradCAM explanation of the SEResNeXt
odel. The 10% quantile of the feature rankings for aspect_27 in

he DL models was 0.390. This means, that 10% of the DL model
xplanations calculated a normalized relevance score of less than 0.390
or aspect_27.

Additionally, the average normalized feature importances across all
L models and all explanation methods were calculated. The most rel-
vant regions were the left vessel (average, normalized feature impor-
ance: 0.822), the optical chiasm (average, normalized feature impor-
ance: 0.750), the CSF region (average, normalized feature importance:
.728), and aspect_24 (average, normalized feature importance:
.706). The FreeSurfer definition of the left vessel includes vessel
egions in the inferior pallidum and putamen which were associated
ith cholinergic neuronal loss [97] as well as atrophy [98] in previous

esearch. Although regions near the optical chiasm and the CSF regions
ere associated with AD in previous research, these are not in focus.
spect_24, however, consolidated the entorhinal gyri of both hemi-
pheres and is one of the regions which are quite prominent in previous
D research [79,105]. This region reached the second rank within the
BM analysis. These findings lead to the assumption that DL models
ombine information extracted from regions which were prominent in
D detection with information from other regions. The focus on the

ess prominent regions can lead to the assumption that DL models are
ble to extract textural information from the MRI scans that exceed the
nown AD biomarkers.

The results show, that the most important regions correspond with
revious research. Regions that are mainly associated with early AD
trophy, such as the hippocampi, or the entorhinal gyri seem to be
ore relevant in classical ML. The classical ML models focus on a
andful of regions for the prediction of AD. In comparison to this, the
L explanations focused on a larger number of regions and combined

egions which were previously associated with AD, like the left and
ight vessels which FreeSurfer definitions are located near the inferior
allidum and putamen, or aspect_24 which includes the entorhinal

gyri of both hemispheres and regions which were less prominent in
previous AD detection, like the optical chiasm, the 4th ventricle and
the CSF region. One reason for the different regions is, that DL focuses
on textural whereas classical ML concentrates on volumetric features.

Similar to the comparison of the local rankings, the NDCG score is
used to compare the similarity of the rankings with a focus on highly
ranked aspects. A summary of the NDCG is visualized in Fig. 8. NDCG
values are in the range of 0 and 1, where 1 indicates perfect similarity
and 0 indicates no similarity. It should be noted, that the matrix is not
symmetric. Each value in the matrix describes the normalized feature
importance of a reference method (visualized as rows) ranked in the
order of the comparison method (visualized as columns) after applying
16

a logarithmic discount. If ‘‘Method A’’ detects only a few relevant
features and calculates a score close to 0.0 for the remaining features,
like classical ML models found in Fig. 7, and ‘‘Method B’’ selects a
broader spectrum of features, this results in a higher NDCG score if
‘‘Method B’’ was used as the reference method than if ‘‘Method A’’ was
used.

Both axes of the similarity matrix can be split into three different
parts which are labeled using curly braces in the plot. These parts are
methods that explain DL models, methods that explain classical ML
models, and the VBM ground truth. The results show high similarity
if methods that explain DL models are compared to each other. The
smallest similarity of 0.592 was observed if the SHAP explanations of
the DenseNet which was trained from scratch were compared to the
GradCAM explanations of the EfficientNet trained from scratch. The
second smallest similarity was 0.615 and was observed if the SHAP
explanations of the DenseNet which was trained from scratch were
compared to the GradCAM++ explanations of the EfficientNet trained
from scratch. The 10% quantile of this group is 0.820, meaning that,
only 10% of the similarity scores fall below a value of 0.820. Thus, for
more than 90% of the comparisons a high similarity was observed.

If the explanations of the classical ML models are compared against
each other, a similar pattern was observed with even higher NDCG
scores. The smallest NDCG value in this group is 0.846 observed for the
comparison of the LIME explanations used for the LR method which was
compared to the permutation importance scores of the DT. This means
that all comparisons of feature rankings that include ML models show
a high similarity.

Due to the fact that the NDCG scores are not symmetric, two
different experiments are possible to compare the feature importance
computed for the classical ML models with those of the DL models.
The first comparison uses the DL explanations as a reference and can
be found in the upper right corner of the matrix in Fig. 8. The highest
NDCG score of 0.948 was observed if the GradCAM explanations of the
SEResNeXt model were compared to the SHAP explanations of the RF
model. The smallest score was 0.637 which was observed for the SHAP
explanation of the DenseNet model trained from scratch compared to
the LIME explanations of the LR model. Overall, relatively small scores
between 0.637 and 0.688 were observed if the SHAP explanations of
the DenseNet model trained from scratch were used as the reference
method. For the entire comparison of explanations generated for DL
models used as reference methods and explanations of ML models as
comparison methods, 10% of the NDCG scores undercut a value of
0.802.

A different pattern was observed if the classical ML models were
used as reference methods and the DL models were used as comparison
methods. A visualization of this comparison can be found in the lower-
left corner of the matrix in Fig. 8. It can be observed, that smaller NDCG
scores were calculated in this comparison. The reason for this observa-
tion is that the classical ML methods are based on a small number of
features, which means that they have feature importance scores close to
0.0 for many of the remaining features. However, some of these features
are highly rated by the DL models. The smallest NDCG score in this
group is 0.192 which was observed if the RF permutation importance
was compared to the SHAP explanations generated for the fine-tuned
EfficientNet. The highest NDCG score is 0.638 observed if the SHAP
explanations of the LR were compared to the SHAP explanations of
the fine-tuned DenseNet. 10% of the NDCG scores have a value below
0.250.

In conclusion, the analysis revealed noticeable differences between
the explanations of the DL and ML models. The first observation was
that DL models select a larger number of aspects for the prediction
of AD in comparison to the ML models. Additionally, the selected
regions differed between both approaches. The classical ML models
focused on the hippocampus region and the entorhinal cortex which
were previously associated with AD. The DL models used a combination
of regions which were previously associated with AD, e.g. the left and

right vessels which FreeSurfer definitions are located near the inferior
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Fig. 8. Similarity plot showing the Normalized Discounted Cumulative Gain (NDCG) between global feature importances of the explainability methods. The correlation matrix is
not symmetric because the NDCG is based on feature importance scores of the features visualized as rows (reference method) and rankings visualized as columns (comparison
method). Changing the reference method changes the ground truth feature importance scores, resulting in asymmetries.
pallidum and putamen, and aspect_24 which includes the entorhinal
gyri of both hemispheres, and regions which were less prominent in
previous AD detection, e.g., the optical chiasm, the 4th ventricle or the
CSF region. The NDCG matrix confirmed structural differences between
the ML and DL explanations and showed relatively high similarities
within the different groups.

Fig. 8 also enables the comparison between the rankings within the
ground truth VBM analysis and the ML and DL performances. The case
when the VBM analysis is used as a reference method is particularly
interesting (last row of Fig. 8). The DL models show NDCG scores
between 0.769 for the GradCAM++ explanations of the EfficientNet
which was trained from scratch and 0.935 for the SHAP explanations of
the fine-tuned DenseNet model. The ML models reached NDCG scores
between 0.848 for the LIME explanations of the LR model and 0.917
for the SHAP explanations of the RF. This comparison shows, that all
of the models and explanation methods show strong similarity to the
VBM ground truth with slight preferences of the ML models. This means
that all of the methods rank features that are relevant in the VBM
ground truth analysis high. The DL models show a larger variance in the
NDCG scores in comparison to the classical ML models. Additionally,
17
Fig. 7 shows that DL models ranked some of the regions that reached
small relevance during the VBM analysis relatively high, e.g., the 4th
ventricle or the optical chiasm. Those regions were combined with
regions which achieved higher scores during the VBM analysis. One
reason for this is, that DL models focus more on textures than on gray
matter volumes.

Overall, it can be stated, that the most relevant regions of the
DenseNet differed from those of the classical ML models. Reasons for
this are that ML models focus on a smaller number of regions, as well
as the DL methods focus on textural differences whereas the classical
ML models focus on volumes. Both model types showed reasonable
similarity to the VBM ground truth with the classical ML model ex-
planations showing slightly higher similarity to the VBM results than
the DL models.

5.7. Correlation of feature importance and model performance

In this section, the influence of the feature importance on the model
performance is investigated. For this reason, the feature importances
which were calculated in Section 5.6 were first normalized to a range
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between 0 and 1 for all models. For each aspect, the Spearman rank
correlation was calculated between the normalized feature importance
and the five metrics which were calculated on the ADNI test set. The
resulting correlation plot is visualized in Fig. 9.

The highest absolute correlation coefficient for the accuracy is
−0.321 which was reached for the white matter hypointensities. This
orrelation coefficient can be interpreted as a low negative correlation.
or the balanced accuracy, the highest absolute correlation of −0.300

was reached for the rostral anterior cingulate gyrus, which can be
also interpreted as a low correlation. A negative correlation means,
that an increase in feature importance leads to a decrease in model
performance. For the AUROC, a moderate correlation was observed
for a few regions, the highest absolute correlation which was −0.663
was reached for aspect_6 which includes the left and right Cere-
bellum White Matter, the brain stem, as well as the left and right
ventral Diencephalon. Similar to the aspects mentioned before, high
feature relevances were associated with decreased performance. These
regions are not in focus in most AD analyses. However, there is some
previous research that identified changes in the morpho-functional
mesoscopic traits [111] as well as amyloid plaques [112] in these
regions. The higher correlation coefficients for the AUROC metric are
caused by the fact that the ML models outperform the DL models for
this metric. The F1-Score shows low correlations for all features. As
for the accuracy, the white matter hypointensities reached the highest
absolute correlation coefficient of −0.325. The MCC shows a similar
pattern and the white matter hypointensities achieved the highest
absolute correlation of −0.325. There are only two aspects showing
a positive correlation between the feature importance and the model
performances, namely aspect_27 and the temporal pole of the right
hemisphere. Aspect_27 includes regions within the middle temporal
and inferior temporal cortices and thus corresponds with previous AD
research [78–83] and is the most relevant region within the classical
ML models.

Overall, no clear pattern was detected that shows a correlation be-
tween the feature importance and the model performances. Most of the
correlations were low, moderate correlations were observed only for
the AUROC metric. Combining those observations with the differences
in feature importances of different models which were observed in
Section 5.6, allows the conclusion that ML and DL models can detect
AD based on different regions without one region outperforming the
remaining ones. However, this conclusion needs to be handled with
caution due to the relatively small number of data points in comparison
to the high number of features.

6. Discussion

This work aims to compare classical ML and DL models regard-
ing the relevance of brain regions identified using interpretable ML.
Seven classical ML models and six 3D CNNs were trained for the
classification of CN vs. AD. An extensive hyperparameter tuning was
applied using a 5-fold CV and the final models were calibrated using
Platt scaling. For the classical ML models, three explanation methods
were implemented, namely permutation-based importance, LIME, and
SHAP. The DL models were analyzed using four explanation meth-
ods (GradCAM, GradCAM++, LIME, SHAP). Correlated volumes were
consolidated using aspects to improve interpretability.

The results showed, that the metrics (accuracy, balanced accuracy,
AUROC, F1-Score, MCC) are similar for the classical ML and DL models.
With an exception for the AUROC metric for which all ML models
except the DT outperformed the DL models. Additionally, it was found
that the classical ML models performed slightly better for 3 T MRI
scans in comparison to 1.5 T scans. For the DL models the different
models preferred different field strengths with slight preferences on
1.5 T scans. Both, the investigation of local explanations for individual
subjects and the global summary of the entire training set showed the
following results: The comparison between four explainability methods
18
Fig. 9. Correlation plot showing the Spearman rank correlation between feature
importances and model performances.

using activations summarized in brain structures for 3D DL models
shows strong correlations. For classical ML models, the most important
brain structures mainly correspond to previous research. For the DL
models, high relevance scores were computed for a wider range of
brain structures containing both, previously associated brain regions
and brain structures which were not previously related to AD. Both
approaches show a reasonable correlation to the VBM ground truth
analysis with the ML models achieving slightly higher similarity. One
reason for this might be, that the VBM analysis is based on GM concen-
tration whereas the DL models were trained on voxel intensities to save
time for intensive MRI pre-processing. A comparison to a deep learning
model trained on GM concentration will be interesting for future work.
The comparison of DL and ML feature rankings showed less similarity.
This observation indicates that there are AD-related patterns in brain
MRIs which cannot be represented by volumetric features.
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Fig. 10. Heatmap plot that compares the global, normalized feature importances in [56] with the feature importances of the DL and classical ML models of this paper using
different explanation methods. As this paper consolidates correlated features in comparison to [56], only the highest ranking in [56] was used for each aspect. Regions that are
not included in one of the papers are marked as NA.
As mentioned in Section 2 ‘‘Related Work’’, [56] compared the
regional relevance of a DL model and a gradient boosting model to
each other. Similar to this paper, the authors found that the DL model
focused on a wider range of regions than the gradient boosting model,
with some of the DL regions not previously associated with AD. A
comparison of the feature importance scores computed in [56] and
the explanation methods used in this work is visualized in Fig. 10. In
comparison to [56], this work uses aspects that summarize correlated
features. For this reason, during the comparison, only the highest
ranking in [56] was used for each aspect. Additionally, regions that
are not included in one of the papers are marked as NA.

The most relevant regions in the DL models implemented in [56] are
the 4th ventricle (Ranks: CN: 1, MCI: 1, AD: 1), aspect_14 (Ranks:
19
CN: 2, AD: 7), aspect_1 (Ranks: MCI: 2), and aspect_27 (Ranks:
AD: 2, MCI: 5). The 4th ventricle was also one of the most relevant
regions of the DenseNet model which was trained from scratch and
the SEResNeXt model in this work. Aspect_14 includes the trans-
verse temporal gyri of both hemispheres. Previous research [85] found
reduced cortical thickness in the left hemisphere of this region. Addi-
tionally, aspect_14 reached the fourth rank during the VBM analysis.
In this research, aspect_14 was not one of the main regions found
for one of the DL models. However, this region reached the 5th rank
within the GradCAM explanations of the SEResNeXt model. Aspect_1
consolidates the posterior and anterior parts of the corpus callosum.
Different parts of the corpus callosum have been also identified as being
relevant for the classification of AD in some of the models presented
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Fig. 11. Correlation plot showing the Normalized Discounted Cumulative Gain (NDCG) between global feature importances of the explainability methods and the feature importances
documented in [56]. The correlation matrix is not symmetric because the NDCG is based on feature importance scores of the features visualized as rows (reference method) and
rankings visualized as columns (comparison method). Changing the reference method changes the ground truth feature importance scores, resulting in asymmetries.
in this paper. Finally, aspect_27 includes the inferior temporal, and
he middle temporal gyri as well as the hippocampi and amygdala of
oth hemispheres. These regions are the most prominent ones in AD
etection [78–83]. The DL models developed in this work were not
ainly focused on aspect_27. However, as previously investigated

n Section 5.6 these regions were nevertheless identified as relevant
egions for many of the models.

Overall, the regional relevances of the models trained in this paper
iffered from those calculated in [56]. Nevertheless, both models also
howed regions which were relevant in both approaches, e.g., the 4th
entricle, or the CSF region. Additionally, both approaches showed
hat DL models used a larger number of regions in comparison to the
lassical ML models. Some of the regions that were highly ranked in
his work, such as the optical chiasm, the inferior lateral ventricle
20
or the vessels, are excluded in [56] due to small numbers of voxels.
Fig. 11 shows the similarity of the rankings computed in this paper
and compares them to the rankings of [56] using the NDCG score. The
matrix is built in the same way as Fig. 8, but the results presented
in [56] are added. In comparison to [56], this work uses aspects that
summarize correlated features. For this reason, during the comparison,
only the highest ranking in [56] was used for each aspect. Additionally,
regions that are not graded in one of the rankings are deleted pairwise.
Fig. 11 shows a reasonable similarity between the DL methods of this
paper and the rankings provided for the DL models in [56]. Using the
DL models trained in this work as reference methods, the rankings re-
ported for the DL model trained in [56] reached NDCG scores between
0.722 and 0.985. The smallest score was reached in the comparison
of the SHAP explanations of the DenseNet which was trained from
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scratch and the MCI ranking presented in [56]. The highest score was
reached during the comparison of the GradCAM explanations of the
SEResNeXt model and the AD ranking of the comparison paper. If the
results from the comparison paper were used as the reference method,
similar results were observed. The comparison of the MCI ranking of the
comparison paper and the GradCAM++ explanations of the EfficientNet
model which was pretrained from scratch reached the smallest NDCG
score of 0.693. The highest NDCG score of 0.977 was achieved by
comparing the AD ranking of the comparison paper with the GradCAM
ranking computed for the SEResNeXt model. The comparison between
the DL model of [56] and the ML models of this paper shows a similar
correlation to the DL models trained in this work. In particular, when
the feature importances of the classical ML models were used as the
reference method, lower NDCG scores between 0.289 and 0.723 were
achieved. The explanations calculated for the AD classification of the
DL model showed higher similarity to the classical ML models of this
paper than the explanations which were computed for the CN and MCI
classes. In terms of classification performances, the DL model trained
in [56] outperformed the gradient boosting classifier. This relationship
was not observed in this paper. However, a fair comparison of the
classification performances of the two approaches is not possible due
to the different classification goals (three classes in [56] vs. two classes
in this work) as well as different test sets.

6.1. Limitations

The approach proposed in this article features some limitations.
First, the method requires the time-consuming segmentation of cortical
and subcortical brain structures. This process can be accelerated, for
example, by using the DL-based FastSurfer [113] pipeline instead of
FreeSurfer. Another time-consuming factor is the calculation of LIME
and SHAP values for the 3D DL models using superpixels. An alternative
solution would be to use an implementation of DeepSHAP [17]. For this
work, it was not used as some case studies showed pixel activations that
faded out by summarizing large brain structures.

During the calculation of SHAP and LIME values for the DenseNet,
the pixel intensities are substituted with the mean intensity in the
subsequent brain structure. A more robust method is to replace the
intensities with MRI intensities of different training subjects. However,
this method requires high GPU memory consumption.

In addition, the use of superpixels during the calculation of SHAP
and LIME could be improved by considering the brain region segmen-
tation mask. In this work, it was decided to use superpixels in order to
avoid biases, which can be introduced by varying sizes. At this point, a
balance must be taken between similarly sized and shaped, as well as,
biologically plausible regions.

Another limitation of this work regarding the summarization of the
explanations in DL models is that correlated features were calculated
for the volumes and applied to the 3D MRIs. This problem could be
addressed by extracting correlations directly from the MRI intensities.

There are some limitations regarding the DL models and their train-
ing. First, the class imbalance was not considered during the training
of the DL models. One possibility to solve this problem is, to use fo-
cal [114] instead of cross entropy loss. Another point is that using more
recently developed DL architectures like Transformer-based models can
be a potential factor to improve the performance of DL models, which
can also influence the relevance of the brain structures. However, at
the moment, VisionTransformer [115] is the only Transformer-based
architecture implemented in the MONAI framework, which was used
in this work. These models require large datasets to achieve reasonable
results and were thus not implemented in this study.

In this work, transfer learning was implemented for the DenseNet
and EfficientNet models based on the LDM-100k datatset. The results
showed that the pretraining did not work well in the experiments as
it did not lead to improved performances. There are several potential
21
options for enhancing model performance during fine-tuning. These op-
tions comprise employing a real-world dataset instead of the artificially
generated LDM-100k dataset for pre-training, utilizing a preprocessed
version of the LDM-100k dataset, or initiating fine-tuning with frozen
parameters for several epochs.

Additionally, this work only focuses on the clinically less relevant
question of CN vs. AD classification. The reasons for this are the
influence of the classification performances on the explanations, which
can lead to less accurate explanations and the small number of MCI
subjects in the external AIBL and OASIS datasets.

6.2. Future work

The results showed that partially different brain structures were
activated for DL and classical ML models. It would be interesting to
investigate the performance and explanations of an ensemble to exploit
the patterns learned as well as the relevance of both model predictions.
An additional comparison which is interesting in this context is the
comparison to models trained on textural MRI features. As DL mod-
els internally compute textual representations of the MRI scans, it is
assumed that textual features like Radiomics [116] potentially show a
higher similarity in the brain regions compared to DL models.

The experiments can be expanded by increasing the number of
interpretation methods to investigate their similarities and differences.
For this reason, it is interesting to investigate interpretable ML methods
like LRP or integrated gradients. Additionally, the comparison of re-
gional feature relevance can be expanded by computing the correlations
between heatmaps on a voxel level. This approach can potentially
reveal a new perspective on the regional differences between models.

Validation on multiple datasets, e.g., the AD subset [49] of the HNR
[50] or a subset of the National Alzheimer’s Coordinating Center [117],
could improve the external validity. This required a precise analysis of
the inclusion and exclusion criteria of the datasets. Instead of diagnoses,
it can be more promising to predict biomarkers which could also further
improve the clinical relevance of the experiments.

Another relevant aspect is that this work compares the results of
multiple explanation methods with VBM results and prior knowledge.
An additional important step for future work is, to conduct a survey
with physicians based on these studies to verify their usefulness in
everyday clinical practice.

There are some new aspects of interest, which should be addition-
ally considered in future work. The first aspect is the investigation of
the impact of multimodal features. Here, approaches similar to [46,
118] could be examined using systematic explainability experiments.
For example, it is interesting to combine MRI scans with genetic data,
or sociodemographic risk factors to investigate the interactions of the
modalities. Additionally, the use of multiple scans per subject taken
at longitudinal visits can lead to further improvements by making
the ML and DL models more robust. Another topic is that this work
only investigates 3D DL models and compares them with classical
ML models. However, most DL models are developed and pretrained
for 2D images, which could potentially improve model performance
for AD detection and thus also affects the interpretation models. For
this reason, future work should compare the activated brain regions
between 3D models and different implementations of slice-based 2D
models.

7. Conclusion

In this research, a workflow was introduced to systematically com-
pare the explanations of DL and classical ML in early AD detection
based on 3D MRIs. For evaluation, seven classical ML models, namely
RF, XGBoost, LightGBM, DT, LR, polynomial SVM, and radial SVM,
were trained on an ADNI training set, validated for a hold-out ADNI
test set, and externally validated for AIBL and OASIS. For the classical
ML models, three explanation methods were applied (permutation
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importance, LIME, SHAP). The resulting explanations were compared
to four DL explanations (GradCAM, GradCAM++, LIME, SHAP) of six
DL models.

The results show similar performances for DL in comparison to
classical ML models. On an exemplary base, the activated regions of
individual observations, which are clinically relevant, were examined
and compared between the explanation methods and ML models. These
explanations were systematically summarized for the entire training set
for a systematic comparison of global regional relevance. The results
showed that different explanation methods showed similar rankings for
the same model. Overall, ML models focused on a small number of
regions which were previously associated with AD. The explanations of
the ML models showed high similarities across each other. DL models
instead have high relevance scores for a larger number of brain regions.
These include regions which were associated with AD in previous
research, like the entorhinal gyri as well as regions not associated with
AD before, like the optical chiasm. These observations are similar to
those presented in [56]. The comparison to the VBM ground truth
showed that ML and DL models both show reasonable similarities with
ML models achieving slightly higher similarity scores. Nevertheless, the
most relevant brain structures clearly differed between models. The
most prominent regions like the hippocampus were more important for
the classical ML models although these are also included within the DL
models with varying relevance.

The developed workflow demonstrates one possibility to system-
atically explain the results of 3D DL models in medical contexts and
compare the activated regions to the most important brain regions of
classical ML models. The experiments showed different regions acti-
vated in both types of models. Nevertheless, both model types show
reasonable similarity with the ground truth regions calculated via VBM.
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